Skip to main content

Advertisement

Log in

Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20 days. Except RegCM-EE, all other models fail to capture the observed spectral features for SM and WM years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abhik S, Halder M, Mukhopadhyay P, Jiang X, Goswami BN (2013) A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Clim Dyn 40:1611–1624. doi:10.1007/s00382-012-1425-x

    Article  Google Scholar 

  • Abhik S, Mukhopadhyay P, Goswami B (2014) Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: identification of possible source of bias. Clim Dyn 43:389–406

    Article  Google Scholar 

  • Ajayamohan RS, Rao SA, Luo JJ, Yamagata T (2009) Influence of Indian Ocean dipole on boreal summer intraseasonal oscillations in a coupled general circulation model. J Geophys Res 114:D06119. doi:10.1029/2008JD011096

    Article  Google Scholar 

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Anthes RA, Kuo YH, Hsie EY, Low-Nam S, Bettge TW (1989) Estimation of skill and uncertainty in regional numerical models. Q J R Meteorol Soc 115:763–806

    Article  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587

    Article  Google Scholar 

  • Byun YH, Hong SY (2004) Impact of boundary layer processes on simulated tropical precipitation. J Clim 17:4032–4044

    Article  Google Scholar 

  • Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and precipitation using RegCM3. Theor Appl Climatol 86:161–172

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc. 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Demott CA, Stan C, Randall DA, Klinter JL III, Khairoutdinov M (2011) The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J Clim 24:5134–5156. doi:10.1175/2011JCLI4202.1

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Fu X, Wang B (2004) Different solutions of intraseasonal oscillation exist in atmosphere–ocean coupled model and atmosphere-only model. J Clim 17:1263–1271

    Article  Google Scholar 

  • Fu X, Wang B, Li T, McCreary JP (2003) Coupling between northward propagating intraseasonal oscillations and sea surface temperature in the Indian Ocean. J Atmos Sci 60:1733–1753

    Article  Google Scholar 

  • Fu X, Wang B, Waliser DE, Tao L (2007) Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J Atmos Sci 64:157–174

    Article  Google Scholar 

  • Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV 139:101–118. doi:10.1051/jp4:2006139008

    Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett 30(18):1966. doi:10.1029/2003GL017.810.2003

    Article  Google Scholar 

  • Goswami BN, Ajaya Mohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14:1180–1198

    Article  Google Scholar 

  • Goswami BN, Shukla J (1984) Quasi-periodic oscillations in a symmetric general circulation model. J Atmos Sci 41:20–37

    Article  Google Scholar 

  • Goswami BN, Wu G, Yasunari T (2006) The annual cycle, intraseasonal oscillations, and roadblock to seasonal predictability of the Asian summer monsoon. J Clim 19:5078–5098

    Article  Google Scholar 

  • Goswami BB, Mukhopadhyay P, Khairoutdinov M, Goswami BN (2013) Simulation of Indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: need to improve the embedded cloud resolving model. Clim Dyn 41:1497–1507. doi:10.1007/s00382-012-1563-1

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Hayashi Y (1982) Space-time spectral analysis and its applications to atmospheric waves. J Meteor Soc Jpn 60:156–171

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Joseph S, Sahai AK, Chattopadhyay R, Goswami BN (2011) Can El Nino-Southern Oscillation (ENSO) events modulate intraseasonal oscillations of Indian summer monsoon? J Geophys Res 116:D20123. doi:10.1029/2010JD015510

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, 152 pp

  • Kripalani RH, Kulkarani A, Sabade SS, Revadekar JV, Patwardhan SK, Kulkarani JR (2004) Intraseasonal oscillation during monsoon 2002 and 2003. Curr Sci 87:325–331

    Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90(3–4):133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Krishna Kumar K, Hoerling M, Rajagopalan B (2005) Advancing dynamical prediction of Indian monsoon precipitation. Geophys Res Lett 32(8):L08704. doi:10.1029/2004GL021979

    Article  Google Scholar 

  • Krishnamurti TN, Subrahmanyam D (1982) The 30–50 day mode at 850 mb during MONEX. J Atmos Sci 39:2088–2095

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Leung LR, Ghan SJ, Zhao ZC, Luo Y, Wang WC, Wei HL (1999) Inter comparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J Geophys Res 104:6425–6454

    Article  Google Scholar 

  • Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27(3):1271–1289

    Article  Google Scholar 

  • Maharana P, Dimri AP (2015) Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Clim Dyn. doi:10.1007/s00382-015-2631-0

    Google Scholar 

  • Oleson KW, NiuGy Yang ZL, Lawrence DM et al (2008) Improvements to the Community Land Model and their impact on the hydrologic cycle. J Geophys Res 113:G01021. doi:10.1029/2007JD000563

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: representation of sub-grid cloud and precipitation processes within RegCM4. J Geophys Res 105:29579–29594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F, Bell J, Diffenbaugh N, Karmacharya J, Konare A, Martinez-Castro D, Porfirio da Rocha R, Sloan L, Steiner A (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteor Soc 88:1395–1409

    Article  Google Scholar 

  • Philippe LP et al (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12(5):849–868

    Article  Google Scholar 

  • Pillai PA, Chowdary JS (2015) Indian summer monsoon intra-seasonal oscillation associated with the developing and decaying phase of El Niño. Int J Climatol. doi:10.1002/joc.4464

    Google Scholar 

  • Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119(3):229–247

    Article  Google Scholar 

  • Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40:637–650

    Article  Google Scholar 

  • Rajendran K, Kitoh A, Arakawa O (2004) Monsoon low-frequency intraseasonal oscillation and ocean-atmosphere coupling over the Indian Ocean. Geophys Res Lett. doi:10.1029/2003GL019031

    Google Scholar 

  • Raju A, Parekh Anant, Chowdary JS, Gnanaseelan C (2015a) Assessment of the Indian summer monsoon in the WRF regional climate model. Clim Dyn 44:3077–3100. doi:10.1007/s00382-014-2295-1

    Article  Google Scholar 

  • Raju PVS, Bhatla R, Almazrouiand M, Assiri M (2015b) Performance of convection schemes on the simulation of summer monsoon features over the South Asia CORDEX domain using RegCM-4.3. Int J Climatol. doi:10.1002/joc.4317

    Google Scholar 

  • Ratnam JV, Krishna Kumar K (2005) Sensitivity of the simulated monsoons of 1987 and 1988 to convective parameterization schemes in MM5. J Clim 18:2724–2743

    Article  Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India. Curr Sci 90:334–345

    Google Scholar 

  • Sharmila S, Joseph S, Chatopadhay R, Sahai AK, Goswami BN (2014) Asymmetry in space time characteristics of Indian summer monsoon intraseasonal oscillations during extreme years: role of seasonal mean state. Int J Climatol 35:1948–1963

    Article  Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over India longitude during the Southwest monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Singh GP, Oh JH (2007) Impact of Indian Ocean sea surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465. doi:10.1002/joc.1485

    Article  Google Scholar 

  • Slingo JM, Annamalai H (2000) 1997: the El Nino of the century and the response of the Indian Summer Monsoon. Mon Weather Rev 128:1778–1797

    Article  Google Scholar 

  • Suhas E, Neena JM, Goswami BN (2012) An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification. Clim Dyn 40:2605–2616. doi:10.1007/s00382-012-1462-5

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Teng H, Wang B (2003) Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J Clim 16:3572–3584

    Article  Google Scholar 

  • Umakanth U, Kesarkar AP, Rao TN, Rao S (2014) An objective criterion for the identification of breaks in Indian summer monsoon precipitation. Atmos Sci Lett 16(3):193–198. doi:10.1002/asl2.536

    Article  Google Scholar 

  • Vernekar AD, Ji Y (1999) Simulation of the onset and intraseasonal variability of two contrasting summer monsoons. J Clim 12:1707–1725

    Article  Google Scholar 

  • Waliser DE et al (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn. doi:10.1007/s00382-003-0337-1

    Google Scholar 

  • Wang B, Webster PJ, Teng H (2005) Antecedents and self-induction of the active-break Indian summer monsoon. Geophys Res Lett 32:L04704

    Article  Google Scholar 

  • Wang B, Webster P, Kikuchi K, Yasunari Qi Y (2006) Boreal summer quasi-monthly oscillation in the global tropics. Clim Dyn 27:661–675

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RT, Yanai M, Yasunari T (1998) Monsoons: Processes, predictability and the prospects of prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wu X, Liang X, Zhang GJ (2003) Seasonal migration of ITCZ precipitation across the equator: why Can’t GCMs simulate it. Geophys Res Lett. doi:10.1029/2003GL017198

    Google Scholar 

  • Yasunari T (1979) Cloudiness fluctuation associated with the northern hemisphere summer monsoon. J Meteor Soc Jpn 57:227–242

    Google Scholar 

  • Yasunari T (1980) A Quasi stationary appearance of 30–40 day period in the cloudiness fluctuation during summer monsoon over India. J Meteor Soc Jpn 58:225–229

    Google Scholar 

  • Zhang GJ, Mu M (2005) Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J Clim 18:4046–4064

    Article  Google Scholar 

  • Zhu W, Li T, Fu X, Luo JJ (2010) Influence of the Maritime Continent on the boreal summer intraseasonal oscillation. J Meteor Soc Jpn 88:395–407. doi:10.2151/jmsj.2010-308

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their valuable comments that helped to improve the manuscript. The authors are thankful to Director, National Atmospheric Research Laboratory (NARL) for providing necessary facilities to carry out this work. We thankfully acknowledge ICTP for providing the regional climate model RegCM4.4. We wish to thank GPCP, ERA-Interim and OISST data products. We are grateful to Prof. S. K. Das and his team for conducting a workshop on Regional climate modeling at IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Umakanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umakanth, U., Kesarkar, A.P., Raju, A. et al. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics. Clim Dyn 47, 895–917 (2016). https://doi.org/10.1007/s00382-015-2878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2878-5

Keywords

Navigation