Skip to main content

Advertisement

Log in

Influence of dynamic vegetation on climate change arising from increasing CO2

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A dynamic global vegetation model (DGVM) is coupled to an atmospheric general circulation model (AGCM) to investigate the influence of vegetation dynamics on climate change under conditions of global warming. The model results are largely in agreement with observations and the results of previous studies in terms of the present climate, present potential vegetation, present net primary productivity (NPP), and pre-industrial carbon budgets. The equilibrium state of climate properties are compared among pre-industrial, doubled, and quadrupled atmospheric CO2 values using DGVM–AGCM and current AGCM with fixed vegetation to evaluate the influence of dynamic vegetation change. We also separated the contributions of temperature, precipitation and CO2 fertilization on vegetation change. The results reveal an amplification of global warming climate sensitivity by 10% due to the inclusion of dynamic vegetation. The total effects of elevated CO2 and climate change also lead to an increase in NPP and vegetation coverage globally. The reduction of albedo associated with this greening results in enhanced global warming. Our separation analysis indicates that temperature alters vegetation at high latitudes such as Siberia or Alaska, where there is a switch from tundra to forest. On the other hand, CO2 fertilization provides the largest contribution to greening in arid/semi-arid region. Precipitation change did not cause any drastic vegetation shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alo CA, Wang GL (2008) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. J Geophys Res 113(G1):G01,004

    Google Scholar 

  • Arakawa A, Schbert WH (1974) Interaction of a cumulus cloud ensemble with large-scale environment. Part i. J Atmos Sci 31(3):674–701

    Article  Google Scholar 

  • Bergengren JC, Thompson SL, Pollard D, Deconto RM (2001) Modeling global climate–vegetation interactions in a doubled CO2 world. Clim Change 50(1–2):31–75

    Article  Google Scholar 

  • Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem–atmosphere interactions in simulated amazonian precipitation decrease and forest dieback under global climate warming. Theor App Climatol 78(1–3):157–175

    Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystem as components of the climate system. Clim Change 29(2):145–167

    Article  Google Scholar 

  • Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Change Biol 9(11):1543–1566

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359(6397):716–718

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weaber SL, Yu Y, Zhao Y (2007) Result of pmip2 coupled simulations of the mid-holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weaber SL, Yu Y, Zhao Y (2007) Result of pmip2 coupled simulations of the mid-Holocene and last glacial maximum—part 2: feedbacks with emphasis on the location of the itcz and mid- and high latitudes heat budget. Climate of the Past 3:279–296

    Article  Google Scholar 

  • Chalita S, LeTreut H (1994) The albedo of temperate and boreal forest and the northern-hemisphere climate—a sensitivity experiment using the lmd-gcm. Clim Dyn 10(4–5):231–240

    Google Scholar 

  • Charney J, Quirk WJ, Chou SH, Kornfield J (1977) Comparative-study of effects of albedo change on drought in semi-arid regions. J Atmos Sci 34(9):1366–1385

    Article  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in sahel. Q J R Meteorol Soc 101(428):193–202

    Article  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A, Kubatzki C, Petoukhov V (2003) Climate change in northern Africa: the past is not the future. Clim Change 57(1–2):99–118

    Article  Google Scholar 

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of result from the coupled model intercomparison project. Glob Planet Change 37(1–2):103–133

    Article  Google Scholar 

  • Cox P (2001) Description of the triffid dynamic global vegetation model. Hadley Centre technical note 24

  • Cox PM, Betts RA, Collins MP, PPH, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78(1–3):137–156

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187

    Article  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, Schloss AL (1999) Comparing global models of terrestrial net primary productivity (npp): overview and key results. Glob Change Biol 5(suppl 1):1–15

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7(4):357–373

    Google Scholar 

  • Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, LeTreut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10) (Art. No. 1405)

  • Farquhar GD (1997) Carbon dioxide and vegetation. Science 278(5342):1411

    Article  Google Scholar 

  • Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of c-3 species. Planta 149(1):78–90

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystem, their properties, goods, and services. In: Parry ML, Canziani OF, Paultikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Fleitmann D, Burns SJ, Mudesee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the holocene epoch. Nature 371(6492):52–54

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353

    Google Scholar 

  • Gerber S, Joos F, Prentice IC (2004) Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2. Glob Chan Biol 10(8):1223–1239

    Article  Google Scholar 

  • Hales K, Neelin JD, Zeng N (2004) Sensitivity of tropical land climate to leaf area index: role of surface conductance versus albedo. J Clim 17(7):1459–1473

    Article  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 coupled gcm (miroc) description K-1 technical report no.1. Center for climate system research (CCSR, Univ. of Tokyo), National Institute for Environmental Studies (NIES), Frontier Research Center for Global Change (FRCGC)

  • Haxeltine A, Prentice IC (1996) Biome3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochem Cycles 10(4):693–709

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis: contribution of working Group I to the Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the intergovernmental panel on climate change (IPCC) emission scenarios. Glob Biogeochem Cycles 15(4):891–907

    Article  Google Scholar 

  • Joussaume S, Taylor KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli A, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Jolly D, Kim JW, Kislov A, Kitoh A, Loutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes P, Vettoretti G, Webb RS, Wyputta U (1999) Monsoon changes for 6000 years ago: results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP). Geophys Res Lett 26(7):859–862

    Article  Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10(6):1590–1619

    Google Scholar 

  • Krinner G, Viovy N, deNoblet Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19(2):Art. No. GB1015

  • Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N, Norman JM, Gower ST (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14(3):795–825

    Article  Google Scholar 

  • Kutzbach JE, Williams J, Varsus S (2005) Simulated 21st century changes in regional water balance of greal lakes region and links to changes in global temperature and poleward moisture transport. Geophys Res Lett 32:L17,707

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10(2):111–127

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal ans spatial variability in global surface air–temperature. Theor Appl Climat 42(1–2):11–12

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Climate change 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis: contribution of working Group I to the Fourth assessment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge

  • Levis S, Bonan GB, Vertenstein M, Oleson KW (2004) The community land model’s dynamic vegetation model (clm-dgvm); technical description and user’s guide. NCAR technical note NCAR/TN-459+IA, pp 50

  • Levis S, Foley JA (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Noberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921

    Article  Google Scholar 

  • Lucht PW, Schaphoff S, Erbrecht T, Cramer UHW (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change 74(1–3):97–122

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projection. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis: contribution of working Group I to the Fourth assesment report of the intergovernmental panel on climate change. Cambridge university press, Cambridge

  • Mellilo JM, McGuire AD, Kicklinger DW, Moore B, Vorosmatry CJ, Schloss AL (1993) Global climate-change and terrestrial net primary production. Nature 363(6426):234–240

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) Hierarchy of turbulence closure models for planetary boundary-layers. J Atmos Sci 31(7):1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure-model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Article  Google Scholar 

  • Morrill C, Overpeck JT, Cole JE (2003) A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13(4):465–476

    Article  Google Scholar 

  • Nakajima T, Tanaka M (1986) Matrix formulations for the transfer of solar-radiation in a planet-parallel scattering atmosphere. J Quant Spectrosc Rad Transf 35(1):13–21

    Article  Google Scholar 

  • Notaro M, Liu ZY, Gallimore R, Vavrus SJ, Kutzbach JE, Prentice IC, Jacob RL (2005) Simulated and observed preindustrial to modern vegetation and climate changes. J Clim 18(17):3650–3671

    Article  Google Scholar 

  • Notaro M, Vavrus S, Liu ZY (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Clim 20(1):70–90

    Article  Google Scholar 

  • Polley HW, Johnson HB, Marino BD, Mayeux HS (1993) Increase in c3 plant water-use efficiency and biomass over glacial to present CO2 concentrations. Nature 361(6407):61–64

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13(4):997–1027

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis: contribution of working groupe I to the Fourth assesment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Sato H, Itoh A, Kohyama T (2007) Seib-dgvm: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol Modell 200(3–4):279–307

    Article  Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis foe world ecosystem. Proc Natl Acad Sci 103(35):13116–13120

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (sib2) for atmospheric gcms. 1. Model formulation. J Clim 9(4):676–705

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the lpj dynamic global vegetation model. Glob Change Biol 9(2):161–185

    Article  Google Scholar 

  • Takata K, Emori S, Watanabe T (2003) Development of the minimal advanced treatments of surface interaction and runoff. Glob Planet Change 38(1–2):209–222

    Article  Google Scholar 

  • Thomas G, Rowntree PR (1992) The boreal forests and climate. Q J R Meteorol Soc 118(505):469–497

    Article  Google Scholar 

  • Thompson SL, Govindasamy B, Mirin A, Caldeira K, Delire C, Milovich J, Wickett M, Erickson D (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31(23):L23211

    Article  Google Scholar 

  • Wyputta U, McAvaney BJ (2001) Influence of vegetation changes during the last glacial maximum using the bmrc atmospheric general circulation model. Clim Dyn 17(12):923–932

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Kimoto, J. Matsumoto, T. Oki and T. Oikawa for their valuable comments and helpful discussions. I. C. Prentice and S. Sitch, whose comments and advice are greatly appreciated, kindly agreed to provide the LPJ dynamic global vegetation model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryouta O’ishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’ishi, R., Abe-Ouchi, A. Influence of dynamic vegetation on climate change arising from increasing CO2 . Clim Dyn 33, 645–663 (2009). https://doi.org/10.1007/s00382-009-0611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0611-y

Keywords

Navigation