Skip to main content
Log in

Mathematical modelling of a potential tsunami associated with a late glacial submarine landslide in the Sea of Marmara

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Potential tsunami waves were modelled on the basis of the morphology and geological setting of a late glacial submarine landslide localized in the north-eastern sector of the Sea of Marmara, using a three-dimensional algorithm with the purpose of assessing the future risk of tsunamogenic landslides in the region. The landslide occurred off the Tuzla Peninsula on the north-eastern slope of the Çınarcık Basin, the easternmost of the three deep Marmara basins. The mass movement appears to be related to the Main Marmara Fault that passes below the toe of the failed mass. Observations from earlier manned submersible dives suggest that the initiation of the slide was facilitated by secondary faults associated with the Hercynian orogeny and involved Palaeozoic shales dipping southwards towards the deep basin. Radiocarbon dating of core material, together with the well-dated Marmara sapropel above the chaotically mixed landslide surface, reveal that the latest landslide event occurred about 17 14C ka b.p. The uppermost scar of the landslide is found at 250 m and its toe at about 1,200 m below the present sea level. At the time of the slide, the Marmara Sea Basin was lacustrine, with its water level at −85 m. In plan view the landslide has a distinctively triangular shape and the lateral extent of its toe is about 10 km. Multibeam bathymetric data indicate that the sliding motion probably occurred in two phases: a slower phase affecting the eastern part, characterized by an undulating surface, and a more rapid phase affecting the western part that possibly created tsunami waves. In the seismic sections, older failed slide masses can be clearly identified; these were probably displaced during marine isotopic stage 6 (∼127–160 ka b.p.). The front of this buried material is located more than 1.5 km further south of the fault. We used a three-dimensional, Green’s function-based potential theory approach, rather than shallow-water equations commonly used in conventional tsunami simulations. The solution algorithm is based on a source-sink formulation and an integral equation. The results indicate that the maximum height of the tsunami in the Çınarcık Basin could have reached about half the average thickness of the sliding mass over a lateral extent of 7 km. Assuming an average thickness of 30 m for the landslide, and considering that the water level at 17 ka b.p. was at about −85 m, the modelling shows that the maximum wave height generated by the slide would have been about 15–17 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aksu AE, Hiscott RN, Kaminski MA, Mudie PJ, Gillespie H, Abrojano T, Yaşar D (2002) Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Mar Geol 190:119–149

    Article  Google Scholar 

  • Alpar B, Yalciner AC, Imamura F, Synolakis CE (2001) Determination of probable underwater failures and modeling of tsunami propagation in the Sea of Marmara. In: Proc Int Tsunami Symp ITS 2001, 7–10 August 2001, Seattle, Session 4, no 4-3, pp 535–543

  • Altınok Y, Alpar B (2006) Marmara Island earthquakes, of 1265 and 1935; Turkey. Nat Hazards Earth Syst Sci 6:999–1006

    Article  Google Scholar 

  • Altınok Y, Tinti S, Alpar B, Yalciner AC, Ersoy S, Bortolucci E, Armigliato A (2001) The tsunami of August 17, 1999 in Izmit Bay, Turkey. Nat Hazards 24(2):133–146

    Article  Google Scholar 

  • Altınok Y, Alpar B, Hébert H, Düzgit Z, Yalçıner AC (2003) The effects of the Marmara tsunamis on the coastal area and in the Strait of Istanbul. In: Özhan E (ed) Proc 6th Int Conf Mediterranean Coastal Environment MEDCOAST 03, 7–11 October 2003. MEDCOAST Secretariat, Middle East Technical University, Ravenna, Italy, pp 2211–2223

  • Ambraseys N, Finkel C (1991) Long-term seismicity of İstanbul and of the Marmara Sea region. Terra Nova 3:527–539

    Article  Google Scholar 

  • Armijo R, Meyer B, Navarro S, King G, Barka A (2002) Asymmetric slip partitioning in the Sea of Marmara pull-apart: a clue to propagation processes of the North Anatolian Fault? Terra Nova 14:80–86

    Article  Google Scholar 

  • Barka AA, Kadinsky-Cade K (1988) Strike slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 7:663–684

    Article  Google Scholar 

  • Baş M, Alpar B (2003) Structural features of the Tuzla region, Istanbul. Turkish J Mar Sci 9:97–110

    Google Scholar 

  • Beck C, Mercier de Lépinay B, Schneider J-L, Cremer M, Cağatay N, Wendenbaum E, Boutareaud S, Ménot G, Schmidt S, Weber O, Eris K, Armijo R, Meyer B, Pondard N, Gutscher M-A, MARMACORE Cruise Party, Turon J-L, Labeyrie L, Cortijo E, Gallet Y, Bouquerel H, Gorur N, Gervais A, Castera M-H, Londeix L, de Rességuier A, Jaouen A (2007) Late Quaternary co-seismic sedimentation in the Sea of Marmara’s deep basins. Sed Geol 199:65–89

    Article  Google Scholar 

  • Bondevik S, Løvholt F, Harbitz CB, Mangerud J, Dawson AG, Svendsen JI (2005) The Storegga slide tsunami—comparing field observations with numerical simulations. Mar Petrol Geol 22:195–208

    Article  Google Scholar 

  • Çağatay MN, Algan O, Sakınç M, Eastoe C, Egesel L, Balkıs N, Ongan D, Caner H (1999) A late Holocene sapropelic sediment unit from the southern Marmara shelf and its palaeoceanographic significance. Quat Geol Rev 18:531–540

    Google Scholar 

  • Çağatay MN, Kuşçu İ, Okay Aİ (2000a) Marmara Sea: morphology and structural geology. In: Meteor Berichte 00-3, Cruise no 44, 22 January–16 May 1999. Fachbereich Geowissenschaften, Universität Bremen, pp 33–36

  • Çağatay MN, Görür N, Algan O, Eastoe C, Tchepalyga A, Ongan D, Kuhn T, Kuşçu İ (2000b) Late glacial holocene palaeoceanography of the Sea of Marmara: timing of connections with the Mediterranean and the Black Seas. Mar Geol 167:191–206

    Article  Google Scholar 

  • Çağatay MN, Görür N, Polonia A, Demirbağ E, Sakınç M, Cormier M-H, Capotondi L, McHugh L, Emre C, Eriş K (2003) Sea level changes and depositional environments in the İzmit Gulf, eastern Marmara Sea, during the late glacial-Holocene period. Mar Geol 202:159–173

    Article  Google Scholar 

  • Carton H, Singh SC, Hirn A, Bazin S, de Voogd B, Vigner A, Ricolleau A, Cetin S, Ocakoglu N, Karakoc F, Sevilgen V (2007) Seismic imaging of the three-dimensional architecture of the Çınarcık Basin along the North Anatolian Fault. J Geophys Res 112:B06101. doi:10.1029/2006JB004548

    Article  Google Scholar 

  • Cita MB, Aloisi G (2000) Deep-sea tsunami deposits triggered by the explosion of Santorini (3500 a BP), Eastern Mediterranean. Sed Geol 135:181–203

    Article  Google Scholar 

  • Cita MB, Rimoldi B (1997) Geological and geophysical evidence for a Holocene tsunami deposit in the Eastern Mediterranean deep-sea record. J Geodynamics 24(1/4):293–304

    Article  Google Scholar 

  • Demirbağ E, Rangin C, Le Pichon X, Şengör MC (2003) Investigation of the tectonics of the main Marmara fault by means of deep-towed seismic data. Tectonophysics 361:1–19

    Article  Google Scholar 

  • Eriş K (2007) Middle Pleistocene to recent sea level changes in the Sea of Marmara (in Turkish with English abstract). PhD Thesis, Eurasia Institute of Earth Sciences, Istanbul Technical University

  • Fine IV, Rabinovich AB, Thomson RE, Kulikov EA (2003) Numerical modeling of tsunami generation by submarine and subaerial landslides. In: Yalçıner AC, Pelinovsky E, Synolakis C, Okal E (eds) Submarine landslides and tsunamis. Proc NATO advanced research worksh underwater ground failures on tsunami generation, modeling, risk and mitigation, Istanbul. NATO science series, vol 21. Kluwer, Dordrecht, pp 69–88

    Google Scholar 

  • Gaudette H, Flight W, Tones L, Folger D (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253

    Google Scholar 

  • Gazioğlu C, Gökaşan E, Algan O, Yücel Z, Tok B, Doğan E (2002) Morphologic features of the Marmara Sea from multi-beam data. Mar Geol 190:397–420

    Article  Google Scholar 

  • Gazioğlu C, Yücel ZY, Doğan E (2005) Morphological features of major submarine landslides of Marmara Sea using multibeam data. J Coast Res 21:664–673

    Article  Google Scholar 

  • Geist EL (2000) Origin of the 17 July, 1998 Papua New Guinea tsunami: earthquake or landslide? Seismol Res Lett 71:344–351

    Article  Google Scholar 

  • Géli L, Henry P, Zitter T, Dupré S, Tryon M, Çagatay MN, Mercier de Lépinay B, Le Pichon X, Sengör AMC, Görür N, Natalin B, Uçarkus G, Özeren S, Volker D, Gasperini L, Burnard P, Bourlange S, Party MS (2008) Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth Planet Sci Lett 274(1/2):34–39

    Article  Google Scholar 

  • Gökaşan E, Gazioğlu C, Alpar B, Yücel ZY, Ersoy S, Gündoğdu O, Yaltırak C, Tok B (2002) Evidence of NW extension of the North Anatolian Fault Zone in the Marmara Sea: a new interpretation of the Marmara Sea (Izmit) earthquake on 17 August 1999. Geo-Mar Lett 21:183–199. doi:10.1007/s00367-001-0088-0

    Article  Google Scholar 

  • Gökaşan E, Ustaömer T, Gazioğlu C, Yucel ZY, Öztürk K, Tur H, Ecevitoğlu B, Tok B (2003) Morpho-tectonic evolution of the Marmara Sea inferred from multi-beam bathymetric and seismic data. Geo-Mar Lett 23:19–33. doi:10.1007/s00367-003-0120-7

    Article  Google Scholar 

  • Gökçeoğlu C, Tunusluoğlu MC, Gorum T, Tur H, Gökaşan E, Tekkeli AB, Batuk F, Alp H (2009) Description of dynamics of the Tuzla landslide and its implications for further landslides in the northern slope and shelf of the Çınarcık Basin (Marmara Sea, Turkey). Eng Geol 106:133–153

    Article  Google Scholar 

  • Görür N, Çağatay N, Sakinç M, Sumengen M, Şentürk K, Yaltirak C, Tchpalyga A (1997) Origin of the Sea of Marmara as deduced from Neogene to Quaternary paleogeographic evolution of its frame. Int Geol Rev 39:342–352

    Article  Google Scholar 

  • Grilli ST, Horillo J (1997) Numerical generation and absorption of fully nonlinear periodic waves. J Eng Mech 123(10):1060–1069

    Article  Google Scholar 

  • Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body: applications to underwater landslides. Eng Anal Bound Elem 23(8):645–656

    Article  Google Scholar 

  • Grilli ST, Vogelman PS, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26:301–313

    Article  Google Scholar 

  • Hampton MA, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Harbitz C, Pedersen G, Gjevik B (1993) Numerical simulations of large water waves due to landslides. J Hydraul Eng 119(12):1325–1342

    Article  Google Scholar 

  • Hayir A, Seseogullari B, Kilincb İ, Erturk A, Cigizoglu HK, Kabdasli MS, Yagci O, Day K (2008) Scenarios of tsunami amplitudes in the north eastern coast of Sea of Marmara generated by submarine mass failure. Coast Eng 55(5):333–356

    Article  Google Scholar 

  • Hébert H, Piatanesi A, Heinrich F, Schindelé F, Okal EA (2002) Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophys Res Lett 29(10):1484. doi:10.1029/2001GL013774

    Article  Google Scholar 

  • Hébert H, Schindelé F, Altinok Y, Alpar B, Gazioglu C (2005) Tsunami hazard in the Marmara Sea (Turkey): a numerical approach to discuss active faulting and impact on the İstanbul coastal areas. Mar Geol 215:23–43

    Article  Google Scholar 

  • Imran J, Harff P, Parker G (2001) A numerical model of submarine debris-flow with graphical user interface. Computer Geosci 27:717–729

    Article  Google Scholar 

  • İmren C, Le Pichon X, Rangin C, Demirbağ E, Ecevitoğlu B, Görür N (2001) The North Anatolian Fault within the Sea of Marmara: a new interpretation based on multi-channel seismic and multi-beam bathymetry data. Earth Planet Sci Lett 186:143–158

    Article  Google Scholar 

  • Kaminski MA, Aksu A, Box M, Hiscott RN, Filipescu S, Al-Salameen M (2002) Late Glacial to Holocene benthic foraminifera in the Marmara Sea: implications for Black Sea–Mediterranean Sea connections following the last deglaciation. Mar Geol 190:165–202

    Article  Google Scholar 

  • Keller J, Ryan F, Ninkovitch D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200, 000 yr recorded in deep sea sediments. Geol Soc Am Bull 89:591–604

    Article  Google Scholar 

  • Ketin I (1953) Tektonische Untersuchungen auf den Prinzeninseln nahe Istanbul (Türkei). Geol Rundsch 41(1):161–172

    Article  Google Scholar 

  • Ketin I, Guner G (1988) Structural peculiarity of the Carboniferous Thracian formation in the Istanbul area. Muhendislik Jeolojisi Bulteni 11:13–18

    Google Scholar 

  • Kilinc I, Hayir A, Cigizoğlu HK (2009) Wave dispersion study for tsunami propagation in the Sea of Marmara. Coast Eng 56:982–991

    Article  Google Scholar 

  • Le Pichon X, Şengör AMC, Demirbağ E, Rangin C, İmren C, Armijo R, Görür N, Çağatay N, Mercier de Lépinay B, Meyer B, Saatçiler R, Tok B (2001) The active main Marmara fault. Earth Planet Sci Lett 192:595–616

    Article  Google Scholar 

  • Liu PLF, Wu TR, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144

    Article  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32:235–283

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Loholft F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc Math Phys Eng Sci 364:2009–2039

    Article  Google Scholar 

  • McHugh CMG, Seeber L, Cormier M-H, Dutton J, Cagatay N, Polonia A, Ryan WBF, Gorur N (2006) Submarine earthquake geology along the North Anatolia Fault in the Marmara Sea, Turkey: a model for transform basin sedimentation. Earth Planet Sci Lett 248:661–684

    Article  Google Scholar 

  • McKenzie DP (1972) Active tectonics of Mediterranean region. Geophys J R Astron Soc 30:109–185

    Google Scholar 

  • Nyst M, Thatcher W (2004) New constraints on the active tectonic deformation of the Aegean. J Geophys Res 109:B11406. doi:10.1029/2003JB002830

    Article  Google Scholar 

  • Okal EA, Synolakis CE (2001) Comment on ‘Origin of the 17 July 1998 Papua New Guinea tsunami: earthquake or landslide?’ by E.L. Geist. Seismol Res Lett 72(3):363–366

    Article  Google Scholar 

  • Okay AI, Kaşlılar ÖA, İmren C, Boztepe GA, Demirbağ E, Kuşçu İ (2000) Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics 321:189–218

    Article  Google Scholar 

  • Örgülü G, Aktar M (2001) Regional moment tensor inversion for strong aftershocks of the August 17, 1999 Izmit earthquake (Mw = 7.4). Geophys Res Lett 28:371–374

    Article  Google Scholar 

  • Özeren MS (2002) Crustal structure and forces in continental deformation. PhD Thesis, University of Cambridge, Cambridge

  • Özeren MS, Postacioglu N, Zora B (2007) A new spectral algorithm for 3-D wave field in deep water. In: Inan E, Kiris A (eds) Vibration problems ICOVP 2005. Springer Proceedings in Physics, vol 111. Springer, Heidelberg, pp 395–402

    Google Scholar 

  • Pareschi MT, Boschi E, Favalli M (2006) Lost tsunami. Geophys Res Lett 33:L22608. doi:10.1029/2006GL027790

    Article  Google Scholar 

  • Pareschi MT, Boschi E, Favalli M (2007) Holocene tsunamis from Mount Etna and the fate of Israeli Neolithic communities. Geophys Res Lett 34:L16317. doi:10.1029/2007GL030717

    Article  Google Scholar 

  • Parke JR, Minshull TA, Anderson G, White RS, McKenzie DP, Kuscu I, Bull JM, Görür N, Şengör AMC (1999) Active faults in the Sea of Marmara, western Turkey, imaged by seismic reflection profiles. Terra Nova 11(5):223–227

    Article  Google Scholar 

  • Parke JR, White RS, McKenzie D, Minshull TA, Bull JM, Kusçu I, Görür N, Sengör C (2002) Interaction between faulting and sedimentation in the Sea of Marmara, western Turkey. J Geophys Res 107(B11), 2286. doi:10.1029/2001JB000450

  • Pelinovsky E, Poplavsky A (1996) Simplified model of tsunami generation by submarine landslides. Phys Chem Earth 21(1/2):13–17

    Article  Google Scholar 

  • Polonia A, Gasperini L, Amorosi A, Bonatti E, Çağatay N, Capotondi L, Cormier MH, Görür N, McHugh C, Seeber L (2004) Holocene slip rate of the North Anatolian Fault beneath the Sea of Marmara. Earth Planet Sci Lett 227:411–426

    Article  Google Scholar 

  • Postacioglu N, Özeren MS (2008) A semi-spectral approach to landslide tsunamis. Geophys J Int 175(2):1–16

    Article  Google Scholar 

  • Sarı E, Çağatay MN (2006) Turbidites and their association with past earthquakes in the deep Çınarcık Basin of the Marmara Sea. Geo-Mar Lett 26:69–76. doi:10.1007/s00367-006-0017-3

    Article  Google Scholar 

  • Şengör AMC (1979) The North Anatolian transform fault; its age, offset and tectonic significance. J Geol Soc Lond 136:269–282

    Article  Google Scholar 

  • Şengör AMC, Özgül N (2009) The climate and geology of İstanbul (in Turkish). In: Encyclopaedia of İstanbul, NTV Press, Istanbul (in press)

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie Blick N (eds) Strike-slip deformation, basin formation, and sedimentation. Soc Econ Paleontol Mineral Spec Publ 37:228–264

  • Şengör AMC, Tüysüz O, İmren C, Sakınç M, Eyidoğan H, Görür N, Le Pichon X, Rangin C (2004) The North Anatolian Fault. A new look. Annu Rev Earth Planet Sci 33:1–75

    Google Scholar 

  • Shanmugam G (2006) Deep-water processes and facies models: implications for sandstone petroleum reservoirs. Handbook of petroleum exploration and production, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Siyako M, Tanış T, Şaroğlu F (2000) Active fault geometry of the Sea of Marmara (in Turkish). TUBITAK Bilim Teknik 388:66–71

    Google Scholar 

  • Smith AD, Taymaz T, Oktay FY, Yüce H, Alpar B, Başaran H, Jackson JA, Kara S, Şimşek M (1995) High-resolution seismic profiling in the Sea of Marmara (northwest Turkey): Late Quaternary sedimentation and sea-level changes. Bull Geol Soc Am 107(8):923–936

    Article  Google Scholar 

  • Soysal H, Sipahioğlu S, Kolçak D, Altinok Y (1981) A catalogue of earthquakes for Turkey and surrounding area (BC 2100–AD 1900). Final report, project number Tbag 341, Scientific and Technical Research Council of Turkey (TUBİTAK), Ankara

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tinti S, Armigliato A, Manucci A, Pagnoni G, Zaniboni F, Yalçiner AC, Altinok Y (2006a) The generating mechanisms of the August 17, 1999 İzmit Bay (Turkey) tsunami: regional (tectonic) and local (mass instabilities) causes. Mar Geol 225:311–330

    Article  Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2006b) The landslides and tsunamis of 30th December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479

    Article  Google Scholar 

  • Tolun L, Çağatay MN, Carrigan WJ (2002) Organic geochemistry and origin of late glacial-Holocene sapropelic layers and associated sediments in Marmara Sea. Mar Geol 190:47–60

    Article  Google Scholar 

  • Tur H (2007) An example of secondary fault activity along the north Anatolian Fault on the NE Marmara Sea Shelf, NW Turkey. Earth Planets Space 59:541–552

    Google Scholar 

  • Ustaömer T, Gökaşan E, Tur H, Görüm T, Batuk FG, Kalafat D, Alp H, Ecevitoğlu B, Birkan H (2008) Faulting, mass-wasting and deposition in an active dextral shear zone, the Gulf of Saros and the NE Aegean Sea, NW Turkey. Geo-Mar Lett 28:171–193. doi:10.1007/s00367-007-0099-6

    Article  Google Scholar 

  • Utkucu M, Kanbur Z, Alptekin Ö, Sünbül F (2009) Seismic behaviour of the North Anatolian Fault beneath the Sea of Marmara (NW Turkey): implications for earthquake recurrence times and future seismic hazard. Nat Hazards 50:45–71. doi:10.1007/s11069-008-9317-4

    Article  Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106:11,201–11,215

    Article  Google Scholar 

  • Watts P (1998) Wavemaker curves for tsunamis generated by underwater landslides. ASCE J Waterw Port Coast Ocean Eng 124(3):127–137

    Article  Google Scholar 

  • Watts P (2000) Tsunami features of solid block underwater landslides. ASCE J Waterw Port Coast Ocean Eng 126(3):144–152

    Article  Google Scholar 

  • Watts ST, Grilli JT, Kirby GJ, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3:391–402

    Article  Google Scholar 

  • Wulf S, Kraml M, Kuhn T, Schwarz M, Inthorn M, Keller J, Kuscu I, Halbach P (2002) Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara. Mar Geol 183(1/4):131–141

    Article  Google Scholar 

  • Yalçıner AC, Pelinovsky EN (2007) A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry. Ocean Eng 34:747–757

    Article  Google Scholar 

  • Yalçıner AC, Altinok Y, Synolakis CE (2000) Tsunami waves in Izmit Bay after the Kocaeli earthquake. In: Earthquake Spectra Reconnaissance Report, EERI, Oakland, CA, suppl vol 16, chap 3, pp 55–62

  • Yalçıner AC, Alpar B, Altınok Y, Özbay I, Imamura F (2002) Tsunamis in the Sea of Marmara: historical documents for the past, models for the future. Mar Geol 190:445–463

    Article  Google Scholar 

  • Yılmaz Y, Gökaşan E, Erbay AY (2009) Morphotectonic development of the Marmara region. Tectonophysics (in press). doi:10.1016/j.tecto.2009.05.012

  • Zitter TAC, Henry P, Aloisi G, Delaygue G, Çağatay MN, Mercier de Lepinay B, Al-Samir MF, Fornacciari F, Tesmer M, Pekdeger A, Wallmann K, Lericolais G (2008) Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey). Deep-Sea Res 55:552–570

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by TUBITAK (Scientific and Technical Research Council of Turkey). We thank Dr. Pierre Henry for several stimulating discussions on chronostratigraphic and mechanical aspects of submarine landslides in the Sea of Marmara. Prof. Emin Demirbağ, and Drs. Caner İmren, Muzaffer Siyako and Satish Singh provided the multichannel seismic sections. We also acknowledge helpful comments from three anonymous reviewers. The ITU Institute of Informatics offered us their computational facilities. Finally, the Turkish Air Force Academy is gratefully acknowledged for drawing our attention to this interesting and important problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sinan Özeren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özeren, M.S., Çağatay, M.N., Postacıoğlu, N. et al. Mathematical modelling of a potential tsunami associated with a late glacial submarine landslide in the Sea of Marmara. Geo-Mar Lett 30, 523–539 (2010). https://doi.org/10.1007/s00367-010-0191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-010-0191-1

Keywords

Navigation