Skip to main content

Advertisement

Log in

Recalcitrant Behaviour of the Seeds of Endangered Syzygium Zeylanicum (L.) DC.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Syzygium zeylanicum (L.) DC. is an endangered tree species indigenous to Western Ghats region and it is traditionally utilized to cure many diseases. The species is sparsely distributed in their natural stands with poor natural regeneration. The present investigation was undertaken with a view to understand the reasons that hinder regeneration process. Physiological, embryological and hormonal changes during embryogeny were studied to understand any developmental anomalies. Embryogeny was typical as that in other dicots with globular, heart, torpedo and cotyledonary stages and no deformations could be identified. Physiological data showed two distinct phases during embryogeny; histodifferentiation and reserve food accumulation stages, and no maturation drying stage. The predominant PGRs identified during histodifferentiation process were IAA (9.96 ng gfw−1), GA4 (9.33 ng gfw−1), BA (484.85 ng gfw−1), ABA (10.58 ng gfw−1), 24-epiBL (18.34 ng gfw−1) and cisJ (10.92 ng gfw−1). Reserve food accumulation phase was marked by the rapid influx and accumulation of IAA (140.17 ng gfw−1), IBA (21.43 ng gfw−1), GA4 (25.53 ng gfw−1), BA (790.04 ng gfw−1), ABA (111.31 ng gfw−1) and cisJ (15.21 ng gfw−1) from the maternal tissues. The seed shedding stage showed the accumulation of higher quantities of GA4 (90.12 ng gfw−1) and lower ABA (26.93 ng gfw−1) with GA4/ABA ratio of 3.34 indicating clear hormonal antagonism during germination. SA was found to accumulate in exceptionally high quantities during embryogeny (from 5335.88 ng gfw−1 to 14699 ng gfw−1). Germination and desiccation study indicated the extreme desiccation intolerance of the seeds and the critical moisture content was found to be 23.70% with an electrolyte leakage of 134.65 µS cm− 1. The results indicate the true recalcitrant behaviour of Syzygium zeylanicum seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

Abbreviations

SA:

Salicylic acid

IAA:

Indole 3-acetic acid

IBA:

Indole 3-butyric acid

GA:

Gibberellic acid

BA:

Benzyl aminopurine

ABA:

Abscisic acid

tZ:

trans Zeatin

tZR:

trans-Zeatin riboside

JA:

Jasmonic acid

cisJ:

Cis-jasmone

MeJA:

Methyl Jasmonate

24-epiBL:

24-epibrassinolide

ACC:

Amino cyclopropane-1-carboxylic acid

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M et al (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the cape verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488. https://doi.org/10.1007/s00425-004-1251-4

    Article  CAS  PubMed  Google Scholar 

  • Anoop MV, Bindu AR (2014) Pharmacognostic and physico-chemical studies on leaves of Syzygium zeylanicum (L.) DC. Int J Pharmacogn Phytochem 6:685–689

    Google Scholar 

  • Bhanu DRC, Sabu KK (2017) Fatty acid composition of the fruits of Syzygium zeylanicum (L.) DC. Var. Zeylanicum Int J Curr Pharm Res 9:155–157

    Article  CAS  Google Scholar 

  • Bhattacharya A, Nagar P, Ahuja P (2002) Seed development in Camellia sinensis (L.) O. Kuntze Seed Science Research 12:39–46. https://doi.org/10.1079/SSR200196

    Article  Google Scholar 

  • Bonner FT (1996) Responses of drying of recalcitrant seeds of Quercus nigra L. Ann Bot 78:181–187

    Article  Google Scholar 

  • Borges IF, Giudice Neto JD, Bilia DAC, Figueiredo-Ribeiro RDCL, Barbedo CJ (2005) Maturation of seeds of Caesalpinia echinata Lam. (brazilwood), an endangered leguminous tree from the Brazilian Atlantic Forest. Braz Arch Biol Technol 48:851–861

    Article  Google Scholar 

  • Browse J, Howe GA (2008) Update on jasmonate signaling: new weapons and rapid response against insect attack. Plant Physiol 146:832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chand AJ, Azeez K (2021) Underutilised fruits of agasthyamala biosphere reserve: a potential source of natural antioxidants. Vegetos 34:447–452

    Article  Google Scholar 

  • Chen J, Lausser A, Dresselhaus T (2014) Hormonal responses during early embryogenesis in maize. Biochem Soc Trans 42:325–331

    Article  PubMed  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Kermode AR (2005) The ert1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48. https://doi.org/10.1111/j.1365-313X.2005.02359.x

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Zurek D (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry, bioactivity, & applications. American Chemical Society, Washington, D.C., pp 122–140

    Chapter  Google Scholar 

  • Corbineau F, Rudnicki RM, Come D (1988) The effects of methyl jasmonate on sunflower (Helianthus annuus L.) seed germination and seedling development. Plant Growth Regul 7:157–169

    Article  CAS  Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) Cis-isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31:107–138

    Article  Google Scholar 

  • Farrant JM, Pammenter NW, Cutting JGM, Berjak P (1993) The role of plant growth regulators in the development and germination of the desiccation-sensitive seeds of Avicennia marina. Seed Sci Res 3:55–63

    Article  CAS  Google Scholar 

  • Gfeller A, Liechi R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3:109

    Google Scholar 

  • Govindarajan M, Benelli G (2016) α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115:2771–2778. https://doi.org/10.1007/s00436-016-5025-2

    Article  PubMed  Google Scholar 

  • Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83

    Article  CAS  PubMed  Google Scholar 

  • Hosomi ST, Santos RB, Custodio CC, Seato PT, Marks TR, Machado Neto NB (2011) Preconditioning cattleya seeds to improve the efficacy of the tetrazolium test for viability. Seed Sci. Technol. 39:178–189

    Article  Google Scholar 

  • ISTA (2008) International rule for seed testing association, News Bulletin, 135. Seed science and technology. pp. 31–33

  • Kermode AR (1995) Regulatory mechanisms in the transition from seed development to germination: interactions between the embryo and the seed environment. In: Kigel J, Galili G (eds) Seed development and germination New York. Marcel Dekker Inc, NY, USA, pp 273–332

    Google Scholar 

  • Khare C (2007) Syzygium zeylanicum (Linn) DC. In: Khare C (ed) Indian medicinal plants. Springer, Ney York

    Chapter  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. The arabidopsis book. Am Soc Plant Biol 12:e0168. https://doi.org/10.1199/tab.0168

    Article  Google Scholar 

  • Koo YM, Heo AY, Choi HW (2020) Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J 36:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe B, Achard P (2016) Long-distance transport of phytohormones through the plant vascular system. Curr Opin Plant Biol 34:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lamarca EV, Barbedo CJ (2014) Methodology of the tetrazolium test for assessing the viability of seeds of Eugenia brasiliensis Lam., Eugenia uniflora L. and Eugenia pyriformis Cambess. J Seed Sci 36:427–434

    Article  Google Scholar 

  • Lamarca EV, Prataviera JS, Borges IF, Delgado LF, Teixeira CC, De Camargo MB et al (2013) Maturation of Eugenia pyriformis seeds under different hydric and thermal conditions. An Acad Bras Cienc 85:223–233

    Article  PubMed  Google Scholar 

  • Leubner-Metzger G (2003) Brassinosteroids promote seed germination. In: Hayat S, Ahmad A (eds) Brassinosteroids. Springer, Dordrecht

    Google Scholar 

  • Lewak S (2011) Metabolic control of embryonic dormancy in apple seed: seven decades of research. Acta Physiol Plant 33:1–24. https://doi.org/10.1007/s11738-0100524-8

    Article  CAS  Google Scholar 

  • Linkies A, Muller K, Morris K, Tureckova V, Wenk M, Cadman CS et al (2009) Ethylene interacts with abscisicacid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822. https://doi.org/10.1105/tpc.109.070201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Qun Li et al (2013) Auxin–ABA interaction controls seed dormancy. Proc Natl Acad Sci 110:15485–15490. https://doi.org/10.1073/pnas.1304651110

    Article  PubMed  PubMed Central  Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    Article  CAS  Google Scholar 

  • Nair PS, Kumar KGA et al (2020) Recalcitrant behavior of seeds of Syzygium cumini (L.) Skeels during embryogeny and natural desiccation. Plant Physiol Rep 25:426–431. https://doi.org/10.1007/s40502020-00528-2

    Article  CAS  Google Scholar 

  • Nomi Y, Shimizu S, Sone Y, Tuyet MT, Gia TP, Kamiyama M, Otsuka Y (2012) Isolation and antioxidant activity of zeylaniin A, a new macrocyclic ellagitannin from Syzygium zeylanicum leaves. J Agric Food Chem 60:10263–10269

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli L, Coraggio I, Leubner-Metzger G (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclopropane-1-carboxylic acid oxidase. Planta 211:144–149

    Article  CAS  PubMed  Google Scholar 

  • Prajith TM, Anil Kumar C, Ajith Kumar KG (2017) Changes in abscisic acid level in the embryonic axis of Saraca indica seeds during maturation and artificial dehydration. Indian J Plant Physiol 22:354–452

    Article  CAS  Google Scholar 

  • Quesnelle PE, Emery RJN (2007) Cis-cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot 85:91–103

    Article  Google Scholar 

  • Romero-Rodriguez MC, Archidona-Yuste A, Abril N, Gil-Serrano AM, Meijon M, Jorrin-Novo JV (2018) Germination and early seedling development in Quercus ilex recalcitrant and non-dormant seeds: targeted transcriptional, hormonal, and sugar analysis. Front Plant Sci 9:1508

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231

    Article  CAS  PubMed  Google Scholar 

  • Shilpa KJ, Krishnakumar G (2015) Nutritional, fermentation and pharmacological studies of Syzygium caryophyllatum (L) Alston and Syzygium zeylanicum (L) DC fruits. Cogent Food Agric 1:1018694. https://doi.org/10.1080/23311932.2015.1018694

    Article  CAS  Google Scholar 

  • Song J, Jiang L, Jameson PE (2015) Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase and amino acid permease gene family members in leaf, flower, silique and seed development. J Exp Bot 66:5067–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

    Article  CAS  PubMed  Google Scholar 

  • Tarkowska D, Dolezal K, Tarkowski P, Astot C, Holub J, Fuksova K, Schmulling T, Sandberg G, Strnad M (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus canadensis leaves by LC-(+) ESI-MS and capillary liquid chromatography/frit–fast atom bombardment mass spectrometry. Physiol Plant 117:579–590

    Article  CAS  PubMed  Google Scholar 

  • Vercruyssen L, Gonzalez N, Werner T, Schmulling T, Inze D (2011) Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. Plant Physiol 155:1339–1352. https://doi.org/10.1104/pp.110.167049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor2. Proc Natl Acad Sci 105:9829–9834. https://doi.org/10.1073/pnas.0803996105

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente M-S, Plasencia J (2011) Salicyclic acid beyond defense: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  Google Scholar 

  • World conservation monitoring centre (1998) Syzygium zeylanicum var. ellipticum. The IUCN red list of threatened species 1998: e.T38825A10151554. https://doi.org/10.2305/IUCN.UK.1998.RLTS.T38825A10151554.en.

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the facilities provided by University of Kerala, Trivandrum for the successful completion of the work and also acknowledge the Indian Institute of Horticulture Research (ICAR) Bengaluru, Karnataka for the LC-MS/MS facility for phytohormonal profiling.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

KPS and KGAK contributed to the study conception, design, formal analysis and investigation. PSN did the data curation. All authors contributed to original draft preparation of the manuscript.

Corresponding author

Correspondence to K. P. Sharanya.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest. The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Handling Editor: Pramod kumar nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 304 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharanya, K.P., Ajith Kumar, K.G. & Nair, P.S. Recalcitrant Behaviour of the Seeds of Endangered Syzygium Zeylanicum (L.) DC.. J Plant Growth Regul 42, 2626–2636 (2023). https://doi.org/10.1007/s00344-022-10732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10732-z

Keywords

Navigation