Skip to main content
Log in

Deep medullary vein engorgement and superficial medullary vein engorgement: two patterns of perinatal venous stroke

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Perinatal venous stroke has classically been attributed to cerebral sinovenous thrombosis with resultant congestion or thrombosis of the small veins draining the cerebrum. Advances in brain MRI, in particular susceptibility-weighted imaging, have enabled the visualization of the engorged small intracerebral veins, and the spectrum of perinatal venous stroke has expanded to include isolated congestion or thrombosis of the deep medullary veins and the superficial intracerebral veins. Congestion or thrombosis of the deep medullary veins or the superficial intracerebral veins can result in vasogenic edema, cytotoxic edema or hemorrhage in the territory of disrupted venous flow. Deep medullary vein engorgement and superficial medullary vein engorgement have characteristic findings on MRI and should be differentiated from neonatal hemorrhagic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee S, Mirsky DM, Beslow LA et al (2017) Pathways for neuroimaging of neonatal stroke. Pediatr Neurol 69:37–48

    PubMed  Google Scholar 

  2. Dunbar M, Kirton A (2019) Perinatal stroke. Semin Pediatr Neurol 32:100767

    PubMed  Google Scholar 

  3. Teksam M, Moharir M, Deveber G, Shroff M (2008) Frequency and topographic distribution of brain lesions in pediatric cerebral venous thrombosis. AJNR Am J Neuroradiol 29:1961–1965

    CAS  PubMed  Google Scholar 

  4. Berfelo FJ, Kersbergen KJ, van Ommen CHH et al (2010) Neonatal cerebral sinovenous thrombosis from symptom to outcome. Stroke 41:1382–1388

    PubMed  Google Scholar 

  5. Linscott LL, Leach JL, Jones BV, Abruzzo TA (2017) Imaging patterns of venous-related brain injury in children. Pediatr Radiol 47:1828–1838

    PubMed  Google Scholar 

  6. Ramenghi LA, Cardiello V, Rossi A (2019) Neonatal cerebral sinovenous thrombosis. Handb Clin Neurol 162:267–280

    PubMed  Google Scholar 

  7. Huang AH, Robertson RL (2004) Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates. AJNR Am J Neuroradiol 25:469–475

    PubMed  Google Scholar 

  8. Arrigoni F, Parazzini C, Righini A et al (2011) Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol 32:2030–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Benninger KL, Maitre NL, Ruess L, Rusin JA (2019) MR imaging scoring system for white matter injury after deep medullary vein thrombosis and infarction in neonates. AJNR Am J Neuroradiol 40:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mankad K, Biswas A, Espagnet MCR et al (2020) Venous pathologies in paediatric neuroradiology: from foetal to adolescent life. Neuroradiology 62:15–37

    PubMed  Google Scholar 

  11. Cain DW, Dingman AL, Armstrong J et al (2020) Subpial hemorrhage of the neonate. Stroke 51:315–318

    PubMed  Google Scholar 

  12. Miller JH, Bardo DME, Cornejo P (2020) Neonatal neuroimaging. Semin Pediatr Neurol 33:100796

    PubMed  Google Scholar 

  13. Okudera T, Huang YP, Fukusumi A et al (1999) Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology 19:93–111

    CAS  PubMed  Google Scholar 

  14. Delion M, Dinomais M, Mercier P (2017) Arteries and veins of the cerebellum. Cerebellum 16:880–912

    PubMed  Google Scholar 

  15. Hufnagle JJ, Tadi P (2020) Neuroanatomy, brain veins. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK546605/. Accessed 23 Aug 2020

  16. Ambrosetto P, Stoffels C, Iorio A, Cerisoli M (1980) The subependymal veins of the posterior portions of the lateral ventricles. Acta Neurochir 51:233–246

    CAS  PubMed  Google Scholar 

  17. Fujii S, Kanasaki Y, Matsusue E et al (2010) Demonstration of cerebral venous variations in the region of the third ventricle on phase-sensitive imaging. AJNR Am J Neuroradiol 31:55–59

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Qiao H, Guo Y et al (2016) Visualization of anatomic variation of the anterior septal vein on susceptibility-weighted imaging. PLoS One 11:e0164221

    PubMed  PubMed Central  Google Scholar 

  19. Zhang X-F, Li J-C, Wen X-D et al (2015) Susceptibility-weighted imaging of the anatomic variation of thalamostriate vein and its tributaries. PLoS One 10:e0141513

    PubMed  PubMed Central  Google Scholar 

  20. Tortora D, Severino M, Malova M et al (2016) Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol 37:2144–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brzegowy K, Zarzecki MP, Musial A et al (2019) The internal cerebral vein: new classification of branching patterns based on CTA. AJNR Am J Neuroradiol 40:1719–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolf BS, Huang YP (1964) The subependymal veins of the lateral ventricles. Am J Roentgenol Radium Ther Nucl 91:406–426

  23. Taoka T, Fukusumi A, Miyasaka T et al (2017) Structure of the medullary veins of the cerebral hemisphere and related disorders. Radiographics 37:281–297

    PubMed  Google Scholar 

  24. Huang YP, Wolf BS (1964) Veins of the white matter of the cerebral hemispheres (the medullary veins). Am J Roentgenol Radium Ther Nucl Med 92:739–755

  25. Jimenez JL, Lasjaunias P, Terbrugge K et al (1989) The trans-cerebral veins: normal and non-pathologic angiographic aspects. Surg Radiol Anat 11:63–72

    CAS  PubMed  Google Scholar 

  26. Nakamura Y, Okudera T, Hashimoto T (1994) Vascular architecture in white matter of neonates: its relationship to periventricular leukomalacia. J Neuropathol Exp Neurol 53:582–589

    CAS  PubMed  Google Scholar 

  27. Couture A, Veyrac C, Baud C et al (2001) Advanced cranial ultrasound: transfontanellar Doppler imaging in neonates. Eur Radiol 11:2399–2410

    CAS  PubMed  Google Scholar 

  28. Miller E, Daneman A, Doria AS et al (2012) Color Doppler US of normal cerebral venous sinuses in neonates: a comparison with MR venography. Pediatr Radiol 42:1070–1079

    PubMed  Google Scholar 

  29. Raets MMA, Sol JJ, Govaert P et al (2013) Serial cranial US for detection of cerebral sinovenous thrombosis in preterm infants. Radiology 269:879–886

    PubMed  Google Scholar 

  30. Dudink J, Steggerda SJ, Horsch S (2020) State-of-the-art neonatal cerebral ultrasound: technique and reporting. Pediatr Res 87:3–12

    PubMed  PubMed Central  Google Scholar 

  31. Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA (2019) Fetal and neonatal neuroimaging. Handb Clin Neurol 162:67–103

    PubMed  Google Scholar 

  32. Aguiar de Sousa D, Lucas Neto L, Jung S et al (2019) Brush sign is associated with increased severity in cerebral venous thrombosis. Stroke 50:1574–1577

    PubMed  Google Scholar 

  33. Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ong BC, Stuckey SL (2010) Susceptibility weighted imaging: a pictorial review. J Med Imaging Radiat Oncol 54:435–449

    PubMed  Google Scholar 

  35. Chalian M, Tekes A, Meoded A et al (2011) Susceptibility-weighted imaging (SWI): a potential non-invasive imaging tool for characterizing ischemic brain injury? J Neuroradiol 38:187–190

    CAS  PubMed  Google Scholar 

  36. Verschuuren S, Poretti A, Buerki S et al (2012) Susceptibility-weighted imaging of the pediatric brain. AJR Am J Roentgenol 198:W440–W449

    PubMed  Google Scholar 

  37. Meoded A, Poretti A, Northington FJ et al (2012) Susceptibility weighted imaging of the neonatal brain. Clin Radiol 67:793–801

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mucke J, Mohlenbruch M, Kickingereder P et al (2015) Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS One 10:e0120801

    PubMed  PubMed Central  Google Scholar 

  39. Kuijf HJ, Bouvy WH, Zwanenburg JJM et al (2016) Quantification of deep medullary veins at 7 T brain MRI. Eur Radiol 26:3412–3418

    PubMed  PubMed Central  Google Scholar 

  40. Dempfle AK, Harloff A, Schuchardt F et al (2018) Longitudinal volume quantification of deep medullary veins in patients with cerebral venous sinus thrombosis: venous volume assessment in cerebral venous sinus thrombosis using SWI. Clin Neuroradiol 28:493–499

    CAS  PubMed  Google Scholar 

  41. Chen X, Wei L, Wang J et al (2020) Decreased visible deep medullary veins is a novel imaging marker for cerebral small vessel disease. Neurol Sci 9:689

    Google Scholar 

  42. Xia X-B, Tan C-L (2013) A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. J Neuroradiol 40:355–359

    PubMed  Google Scholar 

  43. Cai M, Zhang X-F, Qiao H-H et al (2015) Susceptibility-weighted imaging of the venous networks around the brain stem. Neuroradiology 57:163–169

    PubMed  Google Scholar 

  44. Cole L, Dewey D, Letourneau N et al (2017) Clinical characteristics, risk factors, and outcomes associated with neonatal hemorrhagic stroke: a population-based case-control study. JAMA Pediatr 171:230–238

    PubMed  Google Scholar 

  45. Hayashi T, Harada K, Honda E et al (1987) Rare neonatal intracerebral hemorrhage. Two cases in full-term infants. Childs Nerv Syst 3:161–164

    CAS  PubMed  Google Scholar 

  46. Sandberg DI, Lamberti-Pasculli M, Drake JM et al (2001) Spontaneous intraparenchymal hemorrhage in full-term neonates. Neurosurgery 48:1042–1048

    CAS  PubMed  Google Scholar 

  47. Ducreux D, Oppenheim C, Vandamme X et al (2001) Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol 22:261–268

    CAS  PubMed  Google Scholar 

  48. Meyer-Heim AD, Boltshauser E (2003) Spontaneous intracranial haemorrhage in children: aetiology, presentation and outcome. Brain Dev 25:416–421

  49. Brouwer AJ, Groenendaal F, Koopman C et al (2010) Intracranial hemorrhage in full-term newborns: a hospital-based cohort study. Neuroradiology 52:567–576

    PubMed  PubMed Central  Google Scholar 

  50. Bruno CJ, Beslow LA, Witmer CM et al (2014) Haemorrhagic stroke in term and late preterm neonates. Arch Dis Child Fetal Neonatal Ed 99:F48–F53

    PubMed  Google Scholar 

  51. Amlie-Lefond C, Ojemann JG (2017) Neonatal hemorrhagic stroke. JAMA Pediatr 171:220–221

    PubMed  Google Scholar 

  52. Porcari GS, Jordan LC, Ichord RN et al (2020) Outcome trajectories after primary perinatal hemorrhagic stroke. Pediatr Neurol 105:41–47

    PubMed  Google Scholar 

  53. Friedman DP (1997) Abnormalities of the deep medullary white matter veins: MR imaging findings. AJR Am J Roentgenol 168:1103–1108

    CAS  PubMed  Google Scholar 

  54. Nakagawa I, Taoka T, Wada T et al (2013) The use of susceptibility-weighted imaging as an indicator of retrograde leptomeningeal venous drainage and venous congestion with dural arteriovenous fistula: diagnosis and follow-up after treatment. Neurosurgery 72:47–54

    PubMed  Google Scholar 

  55. Raets M, Dudink J, Raybaud C et al (2015) Brain vein disorders in newborn infants. Dev Med Child Neurol 57:229–240

    PubMed  Google Scholar 

  56. Pilli VK, Chugani HT, Juhasz C (2017) Enlargement of deep medullary veins during the early clinical course of Sturge–Weber syndrome. Neurology 88:103–105

  57. Pinto ALR, Ou Y, Sahin M, Grant PE (2018) Quantitative apparent diffusion coefficient mapping may predict seizure onset in children with Sturge–Weber syndrome. Pediatr Neurol 84:32–38

    PubMed  PubMed Central  Google Scholar 

  58. Halefoglu AM, Yousem DM (2018) Susceptibility weighted imaging: clinical applications and future directions. World J Radiol 10:30–45

    PubMed  PubMed Central  Google Scholar 

  59. Kersbergen KJ, Groenendaal F, Benders MJNL, de Vries LS (2011) Neonatal cerebral sinovenous thrombosis: neuroimaging and long-term follow-up. J Child Neurol 26:1111–1120

    PubMed  PubMed Central  Google Scholar 

  60. Friede RL (1972) Subpial hemorrhage in infants. J Neuropathol Exp Neurol 31:548–556

    CAS  PubMed  Google Scholar 

  61. Roth P, Happold C, Eisele G et al (2008) A series of patients with subpial hemorrhage: clinical manifestation, neuroradiological presentation and therapeutic implications. J Neurol 255:1018–1022

    PubMed  Google Scholar 

  62. Saito A, Akamatsu Y, Mikawa S et al (2010) Comparison of large intrasylvian and subpial hematomas caused by rupture of middle cerebral artery aneurysm. Neurol Med Chir 50:281–285

    Google Scholar 

  63. Squier W (2011) The “shaken baby” syndrome: pathology and mechanisms. Acta Neuropathol 122:519–542

    PubMed  Google Scholar 

  64. Minami N, Kimura T, Ichikawa Y, Morita A (2014) Emerging sylvian subpial hematoma after the repair of the ruptured anterior cerebral artery aneurysm with interhemispheric approach: case report. Neurol Med Chir 54:227–230

    Google Scholar 

  65. Suzuki K, Matsuoka G, Abe K et al (2015) Subpial hematoma and extravasation in the interhemispheric fissure with subarachnoid hemorrhage. Neuroradiol J 28:337–340

    PubMed  PubMed Central  Google Scholar 

  66. Hilditch CA, Sonwalkar H, Wuppalapati S (2017) Remote multifocal bleeding points producing a sylvian subpial hematoma during endovascular coiling of an acutely ruptured cerebral aneurysm. J Neurointerv Surg 9:e25–e25

    PubMed  Google Scholar 

  67. Matsukawa H, Miyazaki T, Kiko K et al (2019) Thick clot in the inferior limiting sulcus on computed tomography image as an indicator of sylvian subpial hematoma in patients with aneurysmal subarachnoid hemorrhage. World Neurosurg 125:e612–e619

  68. Orman G, Kralik SF, Meoded A et al (2020) MRI findings in pediatric abusive head trauma: a review. J Neuroimaging 30:15–27

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedieh Khalatbari.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalatbari, H., Wright, J.N., Ishak, G.E. et al. Deep medullary vein engorgement and superficial medullary vein engorgement: two patterns of perinatal venous stroke. Pediatr Radiol 51, 675–685 (2021). https://doi.org/10.1007/s00247-020-04846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04846-3

Keywords

Navigation