Skip to main content

Advertisement

Log in

The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The air quality of Albania is evaluated by trace metals atmospheric deposition using moss biomonitoring method. Bryophyte moss (Hypnum cupressiforme Hedw.) samples were collected during August and September 2015 from 55 sampling points distributed over the entire territory of Albania. The concentrations of Cr, Cu, Fe, Ni, Pb, V, and Zn in moss samples was determined by ICP-AES, ETAAS (As and Cd), and CVAAS (Hg) analysis. Spatial distribution and temporal trend of the moss elements is discussed in this study. Different variability was found in moss metal concentrations that may reflect their spatial distribution patterns and may identify the location of the areas with high contamination of each element. Compared with the measurements of moss collected in 2010, significant differences were found in the concentrations of As, Cr, Cu, Hg, Ni, Pb, and Zn. The differences between two moss surveys may reflect changes in the bioavailability of the elements resulting from wet and dry deposition respectively during 2015 and 2010 moss biomonitoring survey. The pollution loading index that was applied to judge the content of metal contamination indicated moderate pollution throughout Albania. Examination of the potential ecological risk found that As, Cd, Cr, Hg, Ni, and Pb pose the highest potential ecological risks particularly in the areas with high metal contents. Factor analysis applied to investigate the probable sources of metals in the environment suggested that Al and Fe likely originated from natural sources. As, Cd, Hg, Pb, Cu, Zn, Ni, and Cr likely originated from anthropogenic sources associated with long-range transport, transboundary pollution and local emission sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnan Y, Sejalon-Delmas N, Probst A (2013) Comparing early twentieth century and present-day atmospheric pollution in SW France: a story of lichens. Environ Pollut 172:139–148

    Article  CAS  Google Scholar 

  • Allajbeu S, Yushin NS, Lazo P, Qarri F, Duliu OG, Frontasyeva MV (2016) Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique neutron activation analysis and GIS technology. Environ Sci Pollut Res 23:14087–14101. https://doi.org/10.1007/s11356-016-6509-4

    Article  CAS  Google Scholar 

  • Allajbeu S, Qarri F, Marku E, Bekteshi L, Ibro V, Frontasyeva MV, Stafilov T, Lazo P (2017) Contamination scale of atmospheric deposition for assessing air quality in Albania evaluated from most toxic heavy metal and moss biomonitoring. Air Qual Atmos Health 10:587–599. https://doi.org/10.1007/s11869-016-0453-9

    Article  CAS  Google Scholar 

  • Amodio M, Catino S, Dambruoso PR, de Gennaro G, Di Gilio A, Giungato P, Laiola E, Marzocca A, Mazzone A, Sardaro A, Tutino M (2014) Atmospheric deposition: sampling procedures, analytical methods, and main recent findings from the scientific literature. Adv Meteorol. https://doi.org/10.1155/2014/161730

    Article  Google Scholar 

  • Antisari LV, Carbone S, Ferronato C, Simoni A, Vianello G (2011) Characterization of heavy metals atmospheric deposition for assessment of urban environmental quality in the Bologna city (Italy). Environ Qual 7:49–63. https://doi.org/10.6092/issn.2281-4485/3834

    Article  Google Scholar 

  • Astel A, Astel K, Biziuk A (2008) PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in Gdansk city area. Environ Sci Pollut Res 15(1):41–50

    Article  CAS  Google Scholar 

  • ATSDR (1999) Public Health Statement Mercury CAS#: 7439-97-6

  • ATSDR (2004) Public Health Statement Copper CAS#: 7440-50-8. https://www.atsdr.cdc.gov/ToxProfiles/tp132-c1-b.pdf. Accessed 6 Jan 2019

  • ATSDR (2005) Public Health Statement.Nickel CAS#: 7440-02-0. https://www.atsdr.cdc.gov/ToxProfiles/tp15-c1-b.pdf. Accessed 6 Jan 2019

  • ATSDR (2008) Toxicological profile for cadmium. US Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2012) Public Health Statement. Chromium CAS # 7440-47-3. https://www.atsdr.cdc.gov/ToxProfiles/tp7-c1-b.pdf. Accessed 6 Jan 2019

  • Aubert D, LeRoux G, Krachler M, Cheburkin A, Kober B, Shotyk W, Stille P (2006) Origin and flux of atmospheric REE entering an ombrotrophic peat bog in Black Forest (SW Germany): evidence from snow lichens and mosses. Geochim Cosmochim Acta 70:2815–2826

    Article  CAS  Google Scholar 

  • Balabanova B, Stafilov T, Bačeva K, Šajn R (2010) Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radoviš, Republic of Macedonia. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 45(12):1504–1518. https://doi.org/10.1080/10934529.2010.506097

    Article  CAS  Google Scholar 

  • Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stalov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118

    Article  CAS  Google Scholar 

  • Barandovski L, Frontasyeva VM, Stafilov T, Šajn R, Ostrovnaya MT (2015) Multielement atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22:16077–16097. https://doi.org/10.1007/s11356-015-4787-x

    Article  CAS  Google Scholar 

  • Bekteshi L, Lazo P, Qarri F, Stafilov T (2015) Application of normalization process in the survey of atmospheric deposition of heavy metal in Albania by using moss biomonitoring. Ecol Indic 56:50–59. https://doi.org/10.1016/j.ecolind

    Article  CAS  Google Scholar 

  • Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK (2010) Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 268:1492–1501. https://doi.org/10.1016/j.nimb.2010.01.007

    Article  CAS  Google Scholar 

  • Connan O, Maro D, Hébert D, Roupsard P, Goujon R, Letellier B, Le Cavelier S (2013) Wet and dry deposition associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. At Environ 67:394–403. https://doi.org/10.1016/j.atmosenv.2012.11.029

    Article  CAS  Google Scholar 

  • Da Silva ALO, Barrocas PRG, do Conto Jacob S, Moreira JC (2005) Dietary intake and health effects of selected toxic elements. Braz J Plant Physiol 17(1):79–93

    Article  Google Scholar 

  • Dore AJ, Hallsworth S, McDonald AG, Werner M, Kryza M, Abbot J, Nemitz E, Dore CJ, Malcolm H, Vieno M, Reis S, Fowler D (2014) Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Sci Total Environ 479(480):171–180

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807

    Article  CAS  Google Scholar 

  • EMEP Report (2015) Country-specific report for Albania within the CLRTAP and its related Protocols. http://www.msceast.org/index.php/albania. Accessed 13 Mar 2019

  • EPA QA/G-5S (2002) Guidance on choosing a sampling design for environmental data collection. United States Office of Environmental, Environmental Protection Information Agency Washington, DC 20460, EPA/240/R-02/005

  • Fernandez JA, Carballeira A (2001) Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ Contam Toxicol 40:461–468. https://doi.org/10.1007/s002440010198

    Article  CAS  Google Scholar 

  • Fernandez JA, Rey A, Carballeira A (2000) An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis. Sci Total Environ 254:31–44. https://doi.org/10.1016/S0048-9697(00)00431-9

    Article  CAS  Google Scholar 

  • Frontasyeva M, Harmens H in collaboration with the participants (2015) Monitoring of atmospheric deposition of heavy metals, nitrogen and pops in Europe using bryophytes. Monitoring Manual, 2015 Survey

  • Hakanson L (1980) Ecological risk index for aquatic pollution control—a sedimentological approach. Water Res 14:975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coskun M, Dam M et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Aboal JR, Alber R, Carballeira A, Coșkun M, De Temmerman L, Frolova M, Gonzáles-Miqueo L, Jeran Z, Leblond S, Liiv S, Maňkovská B, Pesch R, Poikolainen J, Rühling Å, Santamaria JM, Simonèiè P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860

    Article  CAS  Google Scholar 

  • Harmens H, Foan L, Simon V, Mills G (2013a) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254

    Article  CAS  Google Scholar 

  • Harmens H, Norris D, Mills G and the participants of the moss survey (2013b) Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe, ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK, p 63. http://icpvegetation.ceh.ac.uk. Accessed 25 July 2013

  • Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man SM, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Phil-Karlsson G, Piispanen J, Poikolainen J, Santamaria J, MSkudnik M, Spiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran R, Yurukova L, Zechmeister HG (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104

    Article  CAS  Google Scholar 

  • Hu H (2002) Human health and heavy metals exposure. In: McCally M (ed) Life support: the environment and human health. MIT Press, Cambridge

    Google Scholar 

  • https://tradingeconomics.com/albania/precipitation

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • Kelly FJ, Fussell JC (2015) Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health 37:631–649. https://doi.org/10.1007/s10653-015-9720-1

    Article  CAS  Google Scholar 

  • Lammel G, Brüggemann E, Gnauk T, Müller K, Neusüss C, Röhrl A (2003) A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground content aerosol chemical composition in central Europe. J Aerosol Sci 34:1–25

    Article  CAS  Google Scholar 

  • Landis WG, Durda JL, Brooks ML, Chapman PM, Menzie CA, Stahl RG, Stauber JL (2013) Ecological risk assessment in the context of global climate change. Environ Toxicol Chem 32:79–92. https://doi.org/10.1002/etc.2047

    Article  CAS  Google Scholar 

  • Lazo P, Cullaj A (2002) Determination of the different states of mercury in seawater near the Vlora and Durres Bays. Anal Chem 374:1034–1038

    Article  CAS  Google Scholar 

  • Lazo P, Reif J (2013) Vlora, an abandoned PVC factory at the mediterranean coast. Mercury pollution, threat to humans, and treatment options. In: Wagner-Döbler I (ed) Bioremediation of mercury: current research and industrial applications. Caister Academic Press, Germany, pp 67–79

    Google Scholar 

  • Lazo P, Cullaj A, Deda T, Shehu A (2007) Arsenic in soil environment in Albania. In: Battacharia P, Mukherjee AB, Bundschuh J, Zevenhoven JR, Loeppert RH (eds) Arsenic in soils and groundwater environment. Trace metals and other contaminants in the environment. Elsevier, pp 237–256

  • Lazo P, Bekteshi L, Shehu A (2013) Active moss biomonitoring technique for atmospheric deposition of heavy metals in Elbasan city, Albania. Fresenius Environ Bull 22(1a):213–218

    CAS  Google Scholar 

  • Lazo P, Steinnes E, Qarri F, Allajbeu Sh, Kane S, Stafilov T, Frontasyeva VM, Harmens H (2018) Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe. Chemosphere 190:337–349. https://doi.org/10.1016/j.chemosphere.2017.09.132

    Article  CAS  Google Scholar 

  • Maione M, Fowler D, Monks PS, Reis S, Rudich Y, Williams ML, Fuzzi S (2016) Air quality and climate change: designing new win-win policies for Europe. Environ Sci Policy 65:48–57. https://doi.org/10.1016/j.envsci.2016.03.011

    Article  Google Scholar 

  • Mathews MD (1996) Importance of sampling design and density in target recognition. In: Schumacer D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression, AAPG Memoir 66, pp 243–253

  • Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000

    Article  CAS  Google Scholar 

  • Morais S, e Costa FG, de Lourdes Pereira M (2012) Heavy Metals and Human Health, Environmental Health—Emerging Issues and Practice, Prof. Jacques Oosthuizen (ed) ISBN: 978-953- 307-854-0. InTech. http://www.intechopen.com/books/environmental-health-emerging-issuesand-practice/heavy-metals-and-human-health. Accessed 29 Dec 2018

  • Morales-Boquero RM, Villena EP, Reche I (2013) Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region. Tellus B Chem Phys Meteorol. https://doi.org/10.3402/tellusb.v65i0.18720

    Article  Google Scholar 

  • Morawska L, Thomas S, Bofinger N, Wainwright D, Neale D (1998) Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants. Atmos Environ 32:2467–2478

    Article  CAS  Google Scholar 

  • NAMR (2010) Mineral resources in Albania. http://www.akbn.gov.al/images/pdf/publikime/Minierat.pdf. Accessed 3 Feb 2017

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JF (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Perlwitz JP, García-Pand CP, Miller RL (2015) Predicting the mineral composition of dust aerosols Part 1. Representing key processes. Atmos Chem Phys 15:11593–11627

    Article  CAS  Google Scholar 

  • Qarri F, Lazo P, Stafilov T, Frontasyeva M, Harmens H, Bekteshi L, Baceva K, Goryainova Z (2013) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518. https://doi.org/10.1007/s11356-013-2091-1

    Article  CAS  Google Scholar 

  • Qarri F, Lazo P, Stafilov T, Bekteshi L, Baceva K, Marka J (2014a) The survey of atmospheric deposition of Al, Cr, Fe, Ni, V and Zn in Albania by using moss biomonitoring and ICP-AES. Air Qual Atmos Health 7:297–307. https://doi.org/10.1007/s11869-014-0237-z

    Article  CAS  Google Scholar 

  • Qarri F, Lazo P, Bekteshi L, Stafilov T, Frontasyeva M, Harmens H (2014b) The effect of sampling scheme in the survey of atmospheric deposition of heavy metals in Albania by using moss biomonitoring. Environ Sci Pollut Res 22:2258–2271. https://doi.org/10.1007/s11356-014-3417-3

    Article  CAS  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2017) Prevalence of exposure to heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206

    Article  CAS  Google Scholar 

  • Salcedo RLR, Alvim Ferraz MCM, Alves CA, Martins FG (1999) Time series analysis of air pollution data. Atmos Environ 33:2361–2372

    Article  CAS  Google Scholar 

  • Schroeder WH, Dobson M, Kane DM, Johnson ND (1987) Toxic trace elements associated with airborne particulate matter: a review. JAPCA 37(11):1267–1285. https://doi.org/10.1080/08940630.1987.10466321

    Article  CAS  Google Scholar 

  • Spinoni J, Naumann G, Vogt JV (2017) Pan-European seasonal trends and recent changes of drought frequency and severity. Glob Planet Change 148:113–130. https://doi.org/10.1016/j.gloplacha.2016.11.013

    Article  Google Scholar 

  • Spinoni J, Naumann G, Vogt JV, Barbosaa P (2015) The biggest drought events in Europe from 1950 to 2012. J Hydrol Reg Stud 3:509–524. https://doi.org/10.1016/j.ejrh.2015.01.001. Accessed 9 Nov 2018

    Article  Google Scholar 

  • Stafilov T, Šajn R, Barandovski L, Bačeva AK, Malinovska S (2018) Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual Atmos Health 11(2):137–152. https://doi.org/10.1007/s11869-017-0529-1

    Article  CAS  Google Scholar 

  • Steinnes E, Rühling Å, Lippo H, Makinen A (1997) Reference materials for large-scale metal deposition surveys. Accred Qual Assur 2:243–249

    Article  CAS  Google Scholar 

  • Steinnes E, Berg T, Sjøbakk TE (2003) Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci Total Environ 304:215–219

    Article  CAS  Google Scholar 

  • Suter II GW (1995) Guide for performing screening ecological risk assessments at DOE facilities. Environmental Restoration Risk Assessment Program, ES/ER/TM-153, Oak Ridge National Laboratory. https://rais.ornl.gov/documents/tm153. Accessed 9 Feb 2016

  • Sweet CW, Weiss A, Vermette SJ (1998) Atmospheric deposition of trace metals at three sites near the Great Lakes. Water Air Soil Pollut 103(1–4):423–439. https://doi.org/10.1023/A:1004905832617

    Article  CAS  Google Scholar 

  • Thunis P, Miranda A, Baldasano JM, Blond N, Douros J, Graff A, Janssen S, Juda-Rezler K, Karvosenoja N, Maffei G, Martilli A, Rasoloharimahefa M, Real E, Viaene P, Volta M, White L (2016) Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ Sci Policy 65:13–21. https://doi.org/10.1016/j.envsci.2016.03.013

    Article  CAS  Google Scholar 

  • Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in assessment of heavy metals in the estuaries and the formation of pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309. https://doi.org/10.1016/j.envint.2015.12.017

    Article  CAS  Google Scholar 

  • UNDP CO-ALBANIA (2018) Contribution to sub-regional HDR. https://info.undp.org/docs/pdc/Documents/ALB/Albania%20Regional%20HDR%20contribution%20July%2018-20Strengthening%20resilience%20LGU%20ATlas%2004120.pdf. Accessed 9 Nov 2018

  • Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, Vlieger I, Aardenne J (2014) Impact of maritime transport emissions on coastal air quality in Europe. Atmos Environ 90:96–105. https://doi.org/10.1016/j.atmosenv.2014.03.046

    Article  CAS  Google Scholar 

  • Vinogradov AP (1962) Average contents of chemical elements in the principal type of igneos rocks of the Earth’s crust. Geokhimia 7:641–664

    Google Scholar 

  • Wangberg I, Munthe J, Pirrone N, Iverfeldt A, Bahlman E, Costa P, Ebinghaus R, Feng X, Ferrara R, Gardfeldt K, Kock H, Lanzillotta E, Mamane Y, Mas F, Melamed E, Osnat Y, Prestbo E, Sommar J, Schmolke S, Spain G, Sprovieri F, Tuncel G (2001) Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos Environ 35:3019–3025

    Article  CAS  Google Scholar 

  • Wu Y, Zhang J, Ni Z, Liu S, Jiang Z, Huang X (2018) Atmospheric deposition of trace elements to Daya Bay, South China Sea. Mar Pollut Bull 127:72–683. https://doi.org/10.1016/j.marpolbul.2017.12.046

    Article  CAS  Google Scholar 

  • Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2003) Variations in heavy metal concentrations in the moss species Abietinella abietina (Hedw.) Fleisch according to sampling time, within site variability and increase in biomass. Sci Total Environ 301(1–3):55–65

    Article  CAS  Google Scholar 

  • Zhang C, Qiao Q, Piper JDA, Huang B (2011) Assessment of heavy metal pollution from a Fe-smelting plant in urban river. Environ Pollut 159:3057–3070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the staff of the Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, Skopje, Macedonia for help with the ICP-AES analysis of Albanian moss samples. The publishing is supported from University of Vlora through the University Founds for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranvera Lazo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qarri, F., Lazo, P., Allajbeu, S. et al. The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition. Arch Environ Contam Toxicol 76, 554–571 (2019). https://doi.org/10.1007/s00244-019-00608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00608-x

Navigation