Skip to main content

Advertisement

Log in

DNA photoproducts released by repair in biological fluids as biomarkers of the genotoxicity of UV radiation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

UV-induced formation of photoproducts in DNA is a major initiating event of skin cancer. Consequently, many analytical tools have been developed for their quantification in DNA. In the present work, we extended our previous liquid chromatography–mass spectrometry method to the quantification of the short DNA fragments containing photoproducts that are released from cells by the repair machinery. We designed a robust protocol including a solid-phase extraction step (SPE), an enzymatic treatment aimed at releasing individual photoproducts, and a liquid chromatography method combining on-line SPE and ultra-high-performance liquid chromatography for optimal specificity and sensitivity. We also added relevant internal standards for a better accuracy. The method was validated for linearity, repeatability, and reproducibility. The limits of detection and quantification were found to be in the fmol range. The proof of concept of the use of excreted DNA repair products as biomarkers of the genotoxicity of UV was obtained first in in vitro studies using cultured HaCat cells and ex vivo on human skin explants. Further evidence was obtained from the detection of pyrimidine dimers in the urine of human volunteers collected after recreational exposure in summer.

Graphical abstract

An assay was designed to quantify the DNA photoproducts released from cells within short fragments by the DNA repair machinery. These oligonucleotides were isolated by solid-phase extraction and enzymatically hydrolyzed. The photoproducts were then quantified by on-line SPE combined with UHPLC-MS/MS with isotopic dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang AH, Chien AL. Photoaging: a review of current literature. Curr Dermatol Rep. 2020;9:22–9. https://doi.org/10.1007/s13671-020-00288-0.

    Article  Google Scholar 

  2. Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol. 2019;19:688–701. https://doi.org/10.1038/s41577-019-0185-9.

    Article  CAS  PubMed  Google Scholar 

  3. Subhadarshani S, Athar M, Elmets CA. Photocarcinogenesis. Curr Dermatol Rep. 2020;9:189–99. https://doi.org/10.1007/s13671-020-00307-0.

    Article  Google Scholar 

  4. Brash DE. UV signature mutations. Photochem Photobiol. 2015;91:15–26. https://doi.org/10.1111/php.12377.

    Article  CAS  PubMed  Google Scholar 

  5. Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018;17:1816–41. https://doi.org/10.1039/c7pp00395a.

    Article  CAS  PubMed  Google Scholar 

  6. Deleeuw SM, Simons WIM, Vermeer BJ, Schothorst AA. Comparison of melanocytes and keratinocytes in ultraviolet-induced DNA-damage per minimum erythema dose sunlight - applicability of ultraviolet action spectra for risk estimates. J Invest Dermatol. 1995;105:259–63. https://doi.org/10.1111/1523-1747.ep12318107.

    Article  CAS  Google Scholar 

  7. Setlow RB. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci U S A. 1974;71:3363–6. https://doi.org/10.1073/pnas.71.9.3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young AR, Chadwick CA, Harrison GI, Nikaido O, Ramsden J, Potten CS. The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. J Invest Dermatol. 1998;111:982–8. https://doi.org/10.1046/j.1523-1747.1998.00436.x.

    Article  CAS  PubMed  Google Scholar 

  9. Douki T. The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem Photobiol Sci. 2013;12:1286–302. https://doi.org/10.1039/C3PP25451H.

    Article  CAS  PubMed  Google Scholar 

  10. Douki T. Sunlight-induced DNA damage: molecular mechanisms and photoprotection strategies. In: Wondrak GT, editor. Skin stress response pathways: environmental factors and molecular opportunities. Springer Cham (Springer Int. Publish); 2016. p. 49–77. https://doi.org/10.1007/978-3-319-43157-4_3.

  11. Kielbassa C, Roza L, Epe B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis. 1997;18:811–6. https://doi.org/10.1093/carcin/18.4.811.

    Article  CAS  PubMed  Google Scholar 

  12. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA. 2006;103:13765–70. https://doi.org/10.1073/pnas.0604213103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perdiz D, Grof P, Mezzina M, Nikaido O, Moustacchi E, Sage E. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. J Biol Chem. 2000;275:26732–42. https://doi.org/10.1016/S0021-9258(19)61437-7.

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi N, Katsumi S, Imoto K, Nakagawa A, Miyagawa S, Furumura M, et al. Quantitation and visualization of ultraviolet-induced DNA damage using specific antibodies: application to pigment cell biology. Pigment Cell Res. 2001;14:94–102. https://doi.org/10.1034/j.1600-0749.2001.140204.x.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell D, Brooks B. Antibodies and DNA photoproducts: applications, milestones and reference guide. Photochem Photobiol. 2010;86:2–17. https://doi.org/10.1111/j.1751-1097.2009.00673.x.

    Article  CAS  PubMed  Google Scholar 

  16. Varghese AJ. Photochemistry of nucleic acids and their constituents. In: Giese AD, editor. Photophysiology vol. 7. New York: Academic Press; 1972. p. 207–74.

  17. Douki T, Voituriez L, Cadet J. Measurement of pyrimidine (6–4) photoproducts in DNA by a mild acidic hydrolysis HPLC fluorescence detection assay. Chem Res Toxicol. 1995;8:244–53. https://doi.org/10.1021/tx00044a010.

  18. Bykov VJ, Kumar R, Forsti A, Hemminki K. Analysis of UV-induced DNA photoproducts by 32P-postlabeleing. Carcinogenesis. 1995;16:113–8. https://doi.org/10.1093/carcin/16.1.113.

    Article  CAS  PubMed  Google Scholar 

  19. Bykov VJ, Sheehan JM, Hemminki K, Young AR. In situ repair of cyclobutane pyrimidine dimers and 6–4 photoproducts in human skin exposed to solar simulating radiation. J Invest Dermatol. 1999;112:326–631. https://doi.org/10.1046/j.1523-1747.1999.00523.x.

    Article  CAS  PubMed  Google Scholar 

  20. Shih BB, Farrar MD, Cooke MS, Osman J, Langton AK, Kift R, et al. Fractional sunburn threshold UVR doses generate equivalent vitamin D and DNA damage in skin types I-VI but with epidermal DNA damage gradient correlated to skin darkness. J Invest Dermatol. 2018;138:2244–52. https://doi.org/10.1016/j.jid.2018.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Douki T, von Koschembahr A, Cadet J. Insight in DNA repair of UV-induced pyrimidine dimers by chromatographic methods. Photochem Photobiol. 2017;93:207–15. https://doi.org/10.1111/php.12685.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang N, Deng W, Li Y, Ma Y, Liu Y, Li X, et al. Formic acid of ppm enhances LC-MS/MS detection of UV irradiation-induced DNA dimeric photoproducts. Anal Chem. 2020;92:1197–204. https://doi.org/10.1021/acs.analchem.9b04327.

    Article  CAS  PubMed  Google Scholar 

  23. Douki T, Cadet J. Individual determination of the yield of the main-UV induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry. 2001;40:2495–501. https://doi.org/10.1021/bi0022543.

    Article  CAS  PubMed  Google Scholar 

  24. Douki T, Court M, Cadet J. Electrospray-mass spectrometry characterization and measurement of far-UV induced thymine photoproducts. J Photochem Photobiol B: Biol. 2000;54:145–54. https://doi.org/10.1016/S1011-1344(00)00009-9.

    Article  CAS  Google Scholar 

  25. Kotova N, Hemminki K, Segerback D. Urinary thymidine dimer as a marker of total body burden of UV-inflicted DNA damage in humans. Cancer Epidemiol Biomarkers Prev. 2005;14:2868–72. https://doi.org/10.1158/1055-9965.EPI-05-0164.

    Article  CAS  PubMed  Google Scholar 

  26. Le Curieux F, Hemminki K. Cyclobutane thymidine dimers are present in human urine following sun exposure: quantitation using P-32-postlabeling and high-performance liquid chromatography. J Invest Dermatol. 2001;117:263–8. https://doi.org/10.1046/j.1523-1747.2001.01416.x.

    Article  PubMed  Google Scholar 

  27. Petersen B, Wulf HC, Triguero-Mas M, Philipsen PA, Thieden E, Olsen P, et al. Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage. J Invest Dermatol. 2014;134:2806–13. https://doi.org/10.1038/jid.2014.223.

    Article  CAS  PubMed  Google Scholar 

  28. Hu J, Choi JH, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A. Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. J Biol Chem. 2013;288:20918–26. https://doi.org/10.1074/jbc.M113.482257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adar S, Hu J, Lieb JD, Sancar A. Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proc Natl Acad Sci USA. 2016;113:E2124–33. https://doi.org/10.1073/pnas.1603388113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu J, Adar S, Selby CP, Liebler DC, Sancar A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev. 2015;29:948–60. https://doi.org/10.1101/gad.261271.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu J, Adebali O, Adar S, Sancar A. Dynamic maps of UV damage formation and repair for the human genome. Proc Natl Acad Sci USA. 2017;114:6758–63. https://doi.org/10.1073/pnas.1706522114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song J, Kemp MG, Choi JH. Detection of the excised, damage-containing oligonucleotide products of nucleotide excision repair in human cells. Photochem Photobiol. 2017;93:192–8. https://doi.org/10.1111/php.12638.

    Article  CAS  PubMed  Google Scholar 

  33. Choi JH, Han S, Kemp MG. Detection of the small oligonucleotide products of nucleotide excision repair in UVB-irradiated human skin. DNA Repair. 2020;86:102766. https://doi.org/10.1016/j.dnarep.2019.102766.

    Article  CAS  PubMed  Google Scholar 

  34. Carpenter MA, Ginugu M, Khan S, Kemp MG. DNA containing cyclobutane pyrimidine dimers is released from UVB-irradiated keratinocytes in a caspase-dependent manner. J Invest Dermatol. 2022. https://doi.org/10.1016/j.jid.2022.04.030 (in press).

    Article  PubMed  Google Scholar 

  35. Douki T, Odin F, Caillat S, Favier A, Cadet J. Predominance of the 1, N2-propano 2’-deoxyguanosine adduct among 4-hydroxy-2-nonenal-induced DNA lesions. Free Radic Biol Med. 2004;37:62–70. https://doi.org/10.1016/j.freeradbiomed.2004.04.013.

    Article  CAS  PubMed  Google Scholar 

  36. Courdavault S, Baudouin C, Sauvaigo S, Mouret S, Candéias S, Charveron M, et al. Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UVB-irradiated cultured human fibroblasts. Photochem Photobiol. 2004;79:145–51. https://doi.org/10.1111/j.1751-1097.2004.tb00004.x.

    Article  CAS  PubMed  Google Scholar 

  37. Ravanat JL, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, et al. Cellular background level of 8-oxo-7,8-dihydro-2’-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis. 2002;23:1911–8. https://doi.org/10.1093/carcin/23.11.1911.

    Article  CAS  PubMed  Google Scholar 

  38. Walker V, Mills GA. Solid-phase extraction in clinical biochemistry. Ann Clin Biochem. 2002;39:464–77. https://doi.org/10.1258/000456302320314476.

    Article  CAS  PubMed  Google Scholar 

  39. Hennion MC. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A. 1999;856:3–54. https://doi.org/10.1016/s0021-9673(99)00832-8.

    Article  CAS  PubMed  Google Scholar 

  40. Ciccimaro E, Blair IA. Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis. 2010;2:311–41. https://doi.org/10.4155/bio.09.185.

    Article  CAS  PubMed  Google Scholar 

  41. Tretyakova N, Goggin M, Sangaraju D, Janis G. Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol. 2012;25:2007–35. https://doi.org/10.1021/tx3002548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Douki T, Court M, Sauvaigo S, Odin F, Cadet J. Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem. 2000;275:11678–85. https://doi.org/10.1074/jbc.275.16.11678.

    Article  CAS  PubMed  Google Scholar 

  43. Neue UD, Kele M, Bunner B, Kromidas A, Dourdeville T, Mazzeo JR, et al. Ultra-performance liquid chromatography technology and applications. In: Grushka E, Grinberg N, editors., et al., Advances in chromatography. Advances in Chromatography, vol. 48. Boca Raton: Crc Press-Taylor & Francis Group; 2010. p. 99–143.

    Chapter  Google Scholar 

  44. Maldaner L, Jardim I. The state of art of ultra performance liquid chromatography. Quim Nova. 2009;32:214–22. https://doi.org/10.1590/s0100-40422009000100036.

    Article  CAS  Google Scholar 

  45. Chen LG, Wang H, Zeng QL, Xu Y, Sun L, Xu HY, et al. On-line coupling of solid-phase extraction to liquid chromatography-a review. J Chromatogr Sci. 2009;47:614–23. https://doi.org/10.1093/chromsci/47.8.614.

    Article  CAS  PubMed  Google Scholar 

  46. Pyrzynska K, Pobozy E. On-line coupling of solid phase extraction sample processing with high-performance liquid chromatography. Crit Rev Anal Chem. 2002;32:227–43. https://doi.org/10.1080/10408340290765533.

    Article  CAS  Google Scholar 

  47. U.S. Department of Health and Human Services, Food and Drug Administration. Bioanalytical method validation - Guidance for industry. 2018; FDA-2013-D-1020.

  48. Scientific Working Group for Forensic Toxicology (SWGTOX). Standard practices for method validation in forensic toxicology. J Anal Toxicol. 2013;37:452–74. https://doi.org/10.1093/jat/bkt054.

  49. Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2011;2:21. https://doi.org/10.4103/2229-5186.79345.

    Article  Google Scholar 

  50. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Validation of analytical procedures: text and methodology Q2(R1). ICH Harmonised Tripartite; 2005. p. 1–13.

  51. Cooke MS, Hu CW, Chang YJ, Chao MR. Urinary DNA adductomics - a novel approach for exposomics. Environ Int. 2018;121:1033–8. https://doi.org/10.1016/j.envint.2018.10.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Groopman JD, Zhu JQ, Donahue PR, Pikul A, Zhang LS, Chen JS, et al. Molecular dosimetry of urinary aflatoxin-DNA adducts in people living in Guangxi Autonomous Region, People’s Republic of China. Cancer Res. 1992;52:45–52.

    CAS  PubMed  Google Scholar 

  53. Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, et al. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev. 2005;14:2605–13. https://doi.org/10.1158/1055-9965.EPI-05-0368.

    Article  CAS  PubMed  Google Scholar 

  54. Gaikwad NW, Yang L, Weisenburger DD, Vose J, Beseler C, Rogan EG, et al. Urinary biomarkers suggest that estrogen-DNA adducts may play a role in the aetiology of non-Hodgkin lymphoma. Biomarkers. 2009;14:502–12. https://doi.org/10.3109/13547500903121715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Yue L, Nie Z, Chen J, Guo L, Wu B, et al. Simultaneous determination of four sulfur mustard-DNA adducts in rabbit urine after dermal exposure by isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;961:29–35. https://doi.org/10.1016/j.jchromb.2014.04.050.

    Article  CAS  PubMed  Google Scholar 

  56. Roser M, Beal D, Eldin C, Gudimard L, Caffin F, Gros-Desormeaux F, et al. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog. Anal Bional Chem. 2021;413:1337–51. https://doi.org/10.1007/s00216-020-03096-4.

    Article  CAS  Google Scholar 

  57. Henriksen T, Weimann A, Larsen EL, Poulsen HE. Quantification of 8-oxo-7,8-dihydro-2’-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free Radic Biol Med. 2021;172:350–7. https://doi.org/10.1016/j.freeradbiomed.2021.06.014.

  58. Gan W, Liu X-L, Yu T, Zou Y-G, Li T-T, Wang S, et al. Urinary 8-oxo-7,8-dihydroguanosine as a potential biomarker of aging. Front Aging Neurosci. 2018;10: article 34. https://doi.org/10.3389/fnagi.2018.00034.

  59. Zanolin ME, Girardi P, Degan P, Rava M, Olivieri M, Di Gennaro G, et al. Measurement of a urinary marker (8-hydroxydeoxy-guanosine, 8-OHdG) of DNA oxidative stress in epidemiological surveys: a pilot study. Int J Biol Markers. 2015;30:E341–5. https://doi.org/10.5301/jbm.5000129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1132 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynaud, N., Belz, L., Béal, D. et al. DNA photoproducts released by repair in biological fluids as biomarkers of the genotoxicity of UV radiation. Anal Bioanal Chem 414, 7705–7720 (2022). https://doi.org/10.1007/s00216-022-04302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04302-1

Keywords

Navigation