Skip to main content
Log in

Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH4 under non-analytical conditions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aqueous-phase reaction of dimethylarsinc acid (DMAs(V)) with NaBH4 (THB) was studied under non-analytical conditions (1000 μg/mL As, 0.1 M HCl, 1% NaBH4) with the aim of identifying intermediates and reaction products. The use of direct analysis in real time (DART) with high-resolution mass spectrometry (HRMS), in combination with two different chemical vapor generation systems, allowed the identification of some species not detected by GC-MS such as Me2As–AsMe–AsMe2 and the arsonium species [Me3As–AsMe2]+ and [Me2As–AsMe2–AsMe2]+. Many other methylated species of arsenic containing up to four arsenic atoms have been observed. Unfortunately, the oxidation mechanism that took place in the DART source interfered with the identification of some of those species formed in solution following THB reduction. The species identified by DART-HRMS, together with those previously identified by GC-MS (Me2AsH, Me2AsOH, Me3As, Me3AsO, Me2AsAsMeH, Me2AsAsMe2, and Me2As–O–AsMe2)‚ enabled the formulation of hypotheses on the possible reaction pathways and revealed an aqueous-phase reactivity of DMAs(V) which could not be explained on the basis of current knowledge.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dědina J, Tsalev DL. Hydride generation atomic absorption spectrometry. Chichester: Wiley; 1995.

    Google Scholar 

  2. Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem. 2014;86:10422–8. https://doi.org/10.1021/ac502931k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Proch J, Niedzielski P. In–spray chamber hydride generation by multi–mode sample introduction system (MSIS) as an interface in the hyphenated system of high performance liquid chromatography and inductivity coupled plasma optical emission spectrometry (HPLC/HG–ICP–OES) in arsenic species determination. Talanta. 2020;208:120395. https://doi.org/10.1016/j.talanta.2019.120395.

    Article  CAS  PubMed  Google Scholar 

  4. Marschner K, Pétursdóttir ÁH, Bücker P, Raab A, Feldmann J, Mester Z, et al. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal Chim Acta. 2019;1049:20–8. https://doi.org/10.1016/j.aca.2018.11.036.

    Article  CAS  PubMed  Google Scholar 

  5. Douillet C, Matoušek T, Stýblo M, Wang Z, Musil S. Direct speciation analysis of arsenic in whole blood and blood plasma at low exposure levels by hydride generation-cryotrapping-inductively coupled plasma mass spectrometry. Anal Chem. 2017;89:9633–7. https://doi.org/10.1021/acs.analchem.7b01868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pitzalis E, Ajala D, Onor M, Zamboni R, D’Ulivo A. Chemical vapor generation of arsane in the presence of L-cysteine. Mechanistic studies and their analytical feedback. Anal Chem. 2007;79:6324–33. https://doi.org/10.1021/ac070513p.

    Article  CAS  PubMed  Google Scholar 

  7. Pitzalis E, Onor M, Mascherpa MC, Pacchi G, Mester Z, D’Ulivo A. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Anal Chem. 2014;86:1599–607. https://doi.org/10.1021/ac4032466.

    Article  CAS  PubMed  Google Scholar 

  8. Marschner K, Musil S, Mikšík I, Dědina J. Investigation of hydride generation from arsenosugars - is it feasible for speciation analysis? Anal Chim Acta. 2018;1008:8–17. https://doi.org/10.1016/j.aca.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  9. Marschner K, Musil S, Dědina J. Demethylation of methylated arsenic species during generation of arsanes with tetrahydridoborate(1-) in acidic media. Anal Chem. 2016;88:6366–73. https://doi.org/10.1021/acs.analchem.6b00735.

    Article  CAS  PubMed  Google Scholar 

  10. Liu M, Liu T, Mao X, Liu J, Na X, Ding L, et al. A novel gas liquid separator for direct sampling analysis of ultratrace arsenic in blood sample by hydride generation in-situ dielectric barrier discharge atomic fluorescence spectrometry. Talanta. 2019;202:178–85. https://doi.org/10.1016/j.talanta.2019.04.041.

    Article  CAS  PubMed  Google Scholar 

  11. Liu M, Liu T, Liu J, Mao X, Na X, Ding L, et al. Determination of arsenic in biological samples by slurry sampling hydriDe generation atomic fluorescence spectrometry using: in situ dielectric barrier discharge trap. J Anal At Spectrom. 2019;34:526–34. https://doi.org/10.1039/c8ja00374b.

    Article  CAS  Google Scholar 

  12. dos Santos QO, Silva Junior MM, Lemos VA, Ferreira SLC, de Andrade JB. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchem J. 2018;143:175–80. https://doi.org/10.1016/j.microc.2018.08.004.

    Article  CAS  Google Scholar 

  13. D’Ulivo A, Mester Z, Meija J, Sturgeon RE. Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal Chem. 2007;79:3008–15. https://doi.org/10.1021/ac061962c.

    Article  CAS  PubMed  Google Scholar 

  14. Pagliano E, Onor M, McCooeye M, D’Ulivo A, Sturgeon RE, Mester Z. Application of direct analysis in real time to a multiphase chemical system: identification of polymeric arsanes generated by reduction of monomethylarsenate with sodium tetrahydroborate. Int J Mass Spectrom. 2014;371:42–6. https://doi.org/10.1016/j.ijms.2014.07.048.

    Article  CAS  Google Scholar 

  15. D’Ulivo A, Mester Z, Sturgeon RE. The mechanism of formation of volatile hydrides by tetrahydroborate(III) derivatization: a mass spectrometric study performed with deuterium labeled reagents. Spectrochimica Acta B. 2005;60:423–38. https://doi.org/10.1016/j.sab.2005.03.015.

  16. Pagliano E, D’Ulivo A, Mester Z, Sturgeon RE, Meija J. The binomial distribution of hydrogen and deuterium in arsanes, diarsanes, and triarsanes generated from As(III)/[BH n D4-n ] - and the effect of trace amounts of Rh(III) ions. J Am Soc Mass Spectrom. 2012;23:2178–86. https://doi.org/10.1007/s13361-012-0489-5.

    Article  CAS  PubMed  Google Scholar 

  17. D’Ulivo A, Meija J, Mester Z, Pagliano E, Sturgeon RE. Condensation cascades and methylgroup transfer reactions during the formation of arsane, methyl- and dimethylarsane by aqueous borohydride and (methyl) arsenates. Anal Bioanal Chem. 2012;402:921–33. https://doi.org/10.1007/s00216-011-5503-4.

    Article  CAS  PubMed  Google Scholar 

  18. Pagliano E, Onor M, Meija J, Mester Z, Sturgeon RE, D’Ulivo A. Mechanism of hydrogen transfer in arsane generation by aqueous tetrahydridoborate: interference effects of Au(III) and other noble metals. Spectrochim Acta B. 2011;66:740–7. https://doi.org/10.1016/j.sab.2011.09.009.

    Article  CAS  Google Scholar 

  19. Cody RB. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal Chem. 2009;81:1101–7. https://doi.org/10.1021/ac8022108.

    Article  CAS  PubMed  Google Scholar 

  20. D’Ulivo L, Pagliano E, Onor M, Mester Z, D’Ulivo A. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. Anal Bioanal Chem. 2019;411:1569–78. https://doi.org/10.1007/s00216-019-01598-4.

    Article  CAS  PubMed  Google Scholar 

  21. Rheingold AL, Lewis JE, Bellama JM. Homoatomic organoarsine ladder polymers. Synthesis and physical properties. Inorg Chem. 1973;12:2845–50. https://doi.org/10.1021/ic50130a021.

    Article  CAS  Google Scholar 

  22. Gupta VK, Krannich LK, Watkins CL. NMR studies of the reaction of MeAsH2 with Me2AsAsMe2. Inorg Chim Acta. 1987;132:163–4. https://doi.org/10.1016/S0020-1693(00)81736-3.

    Article  CAS  Google Scholar 

  23. Cullen WR, Leeder WR. Kinetics of the exchange reaction of dimethylarsenic deuteride with diethylarsine. Can J Chem. 1970;48:3757–60. https://doi.org/10.1139/v70-631.

    Article  CAS  Google Scholar 

  24. Jolly WL, Anderson LB, Beltrami RT. Solid arsenic hydrides. J Am Chem Soc. 1957;79:2443–7. https://doi.org/10.1021/ja01567a024.

    Article  CAS  Google Scholar 

  25. Rheingold AL, Pleau EJ, Ferrar WT. Dynamic NMR study of dimethylarsenic condensation reactions. Inorg Chim Acta. 1977;22:215–8. https://doi.org/10.1016/S0020-1693(00)90921-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D’Ulivo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliano, E., Onor, M., Mester, Z. et al. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH4 under non-analytical conditions. Anal Bioanal Chem 412, 7603–7613 (2020). https://doi.org/10.1007/s00216-020-02896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02896-y

Keywords

Navigation