Skip to main content
Log in

Screening phosphatidylcholine biomarkers in mouse liver extracts from a hypercholesterolemia study using ESI-MS and chemometrics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

When fed a high-fat, high-cholesterol diet (HFD), homozygous LDL receptor knockout mice exhibit extremely high levels of plasma cholesterol that are expected to influence liver metabolism. One step in the investigation of potential hepatic alterations was the analysis of organic extracts of livers from these and control mice by electrospray mass spectrometry (ESI-MS). Chemometrics (bioinformatics) analysis shows that the sample spectra cluster into two groups: one from mice with plasma cholesterol levels in excess of 900 mg dL−1 and one from animals with cholesterol levels of 60–250 mg dL−1. The loadings plot of the first PC in the principal-components analysis (PCA) reveals the chemical basis for clustering, i.e., biomarkers present at different concentrations in the different groups. The exact masses of the key peaks in this loadings plot indicate these species are phosphatidylcholines (PtdChos). This assignment is confirmed by tandem MS. Partial least-squares (PLS) with variable selection shows that the spectra are well correlated with plasma total cholesterol, HDL cholesterol, and triglyceride (TG) levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nelson DL, Cox MM (2004) Lehninger principles of biochemistry. Freeman, New York

    Google Scholar 

  2. Marsh MM, Walker VR, Curtiss LK, Banka CL (1999) J Lipid Res 40:893–900

    CAS  Google Scholar 

  3. Yoshimatsu MY, Terasaki N, Sakashita E, Kiyota H, Sato LJvdL, Takeya M (2004) Int J Exp Pathol 85:335–343

    Article  Google Scholar 

  4. Antonopoulou S, Demopoulos CA, Andrikopoulos NK (1996) J Agric Food Chem 44:3052–3056

    Article  CAS  Google Scholar 

  5. Brouwers JFHM, Gadella BM, van Golde LMG, Tielens AGM (1998) J Lipid Res 39:344–353

    CAS  Google Scholar 

  6. Fragopoulou E, Nomikos T, Antonopoulou S, Mitsopoulou CA, Demopoulos CA (2000) J Agric Food Chem 48:1234–1238

    Article  CAS  Google Scholar 

  7. Schulzki G, Spiegelberg A, Bögl KW, Schreiber GA (1997) J Agric Food Chem 45:3921–3927

    Article  CAS  Google Scholar 

  8. Hurst WJ, Tarka SM, Dobson G, Reid CM (2001) J Agric Food Chem 49:1264–1265

    Article  CAS  Google Scholar 

  9. Lim SY, Park WK, Suzuki H (1999) J Agric Food Chem 47:960–963

    Article  CAS  Google Scholar 

  10. Patton GM, Fasulo JM, Robins SJ (1982) J Lipid Res 23:190–196

    CAS  Google Scholar 

  11. Basile F, Beverly MB, Abbas-Hawks C, Mowry CD, Voorhees KJ, Hadfield TL (1998) Anal Chem 70:1555–1562

    Article  CAS  Google Scholar 

  12. Dailey OD, Severson RF, Arrendale RF (1997) J Agric Food Chem 45:3914–3920

    Article  CAS  Google Scholar 

  13. Lemaire R, Wisztorski M, Desmons A, Tabet JC, Day R, Salzet M, Fournier I (2006) Anal Chem 78:7145–7153

    Article  CAS  Google Scholar 

  14. Billedeau SM, Heinze TM, Siitonen PH (2003) J Agric Food Chem 51:1534–1538

    Article  CAS  Google Scholar 

  15. Ryan D, Antolovich M, Herlt T, Prenzler PD, Lavee S, Robards K (2002) J Agric Food Chem 50:6716–6724

    Article  CAS  Google Scholar 

  16. Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gomez-Cadenas A (2005) J Agric Food Chem 53:8437–8442

    Article  CAS  Google Scholar 

  17. Pulfer M, Murphy RC (2003) Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  18. Otto M (1999) Chemometrics: statistics and computer application in analytical chemistry. Wiley–VCH, Weinheim

    Google Scholar 

  19. Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide. Wiley, New York, NY

    Google Scholar 

  20. Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New York

    Google Scholar 

  21. Chau FT, Liang YZ, Gao J, Shao XG (2004) Chemometrics from basics to wavelet transform. Wiley, NY

    Google Scholar 

  22. Brereton RG (2003) Chemometrics data analysis for the laboratory and chemical plant. Wiley, Chichester

    Google Scholar 

  23. Catharino RR, Haddad R, Cabrini LG, Cunha IBS, Sawaya ACHF, Eberlin MN (2005) Anal Chem 77:7429–7433

    Article  CAS  Google Scholar 

  24. Eide I, Zahlsen K, Kummernes H, Neverdal G (2006) Energy & Fuels 20:1161–1164

    Article  CAS  Google Scholar 

  25. Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, Xu G (2005) Anal Chem 77:4108–4116

    Article  CAS  Google Scholar 

  26. Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T, Burton L, Kurzchalia T, Shevchenko A (2007) Anal Chem 79:4083–4093

    Article  CAS  Google Scholar 

  27. Du Z, Yang R, Guo Z, Song Y, Wang J (2002) Anal Chem 74:5487–5491

    Article  CAS  Google Scholar 

  28. Boernsen KO, Gatzek S, Imbert G (2005) Anal Chem 77:7255–7264

    Article  CAS  Google Scholar 

  29. Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF (2006) J Proteome Res 5:2909–2918

    Article  CAS  Google Scholar 

  30. Navea S, Tauler R, de Juan A (2006) Anal Chem 78:4768–4778

    Article  CAS  Google Scholar 

  31. Ruckebusch C, Duponchel L, Sombret B, Huvenne JP, Saurina J (2003) J Chem Inf Comput Sci 43:1966–1973

    CAS  Google Scholar 

  32. Lutz U, Lutz RW, Lutz WK (2006) Anal Chem 78:4564–4571

    Article  CAS  Google Scholar 

  33. Eide I, Neverdal G, Thorvaldsen B, Shen H, Grung B, Kvalheim O (2001) Environ Sci Technol 35:2314–2318

    Article  CAS  Google Scholar 

  34. Jonsson P, Johansson AI, Gullberg J, Trygg JAJ, Grung B, Marklund S, Sjostrom M, Antti H, Moritz T (2005) Anal Chem 77:5635–5642

    Article  CAS  Google Scholar 

  35. Amigo L, Zanlungo S, Miquel JF, Glick JM, Hyogo H, Cohen DE, Rigotti A, Nervi F (2003) J Lipid Res 44:399–407

    Article  CAS  Google Scholar 

  36. Eder K, Reichlmayr-Lais AM, Kirchgessner M (1993) Clin Chim Acta 219:93–104

    Article  CAS  Google Scholar 

  37. Yang L, Lua Y-Y, Jiang G, Tyler BJ, Linford MR (2005) Anal Chem 77:4654–4661

    Article  CAS  Google Scholar 

  38. Biesinger MC, Paepegaey P-Y, McIntyre NS, Harbottle RR, Petersen NO (2002) Anal Chem 74:5711–5716

    Article  CAS  Google Scholar 

  39. Skrobot VL, Castro EVR, Pereira RCC, Pasa VMD, Fortes ICP (2005) Energy & Fuels 19:2350–2356

    Article  CAS  Google Scholar 

  40. Eide I, Zahlsen K (2005) Energy & Fuels 19:964–967

    Article  CAS  Google Scholar 

  41. Johnson KJ, Rose-Pehrsson SL, Morris RE (2004) Energy & Fuels 18:844–850

    Article  CAS  Google Scholar 

  42. Zahlsen K, Eide I (2006) Energy & Fuels 20:265–270

    Article  CAS  Google Scholar 

  43. http://www.lipidmaps.org/data/structure/text_search.php

  44. Nagy K, Jakab A, Pollreisz F, Bongiorno D, Ceraulo L, Averna MR, Noto D, Vékey K (2006) Rapid Commun Mass Spectrom 20:2433–2440

    Article  CAS  Google Scholar 

  45. Leardi R (1994) J Chemometr 8:65–79

    Article  CAS  Google Scholar 

  46. Leardi R, Boggia R, Terrile M (1992) J Chemometr 6:267–281

    Article  CAS  Google Scholar 

  47. Robins SJ, Fasulo JM, Robins VF, Patton GM (1991) J Lipid Res 32:985–992

    CAS  Google Scholar 

  48. Kasurinen J, van Paridon PA, Wirtz KW, Somerharju P (1990) Biochemistry 29:8548–8554

    Article  CAS  Google Scholar 

  49. Li Z, Agellon LB, Allen TM, Uneda M, Jewell L, Mason A, Vance DE (2006) Cell Metab 3:321–331

    Article  CAS  Google Scholar 

  50. Björkegren J, Hamsten A, Milne RW, Karpe F (1997) J Lipid Res 38:301–314

    Google Scholar 

  51. DeLong CJ, Shen Y-J, Thomas MJ, Cui Z (1999) J Biol Chem 274:29683–29688

    Article  CAS  Google Scholar 

  52. Watson AD (2006) J Lipid Res 47:2101–2111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Virginia “Jill” Patch and William Kang for technical assistance. They also wish to thank Brigham Young University (BYU) for Mentoring Environment Grants, and the Department of Chemistry and Biochemistry, and the College of Physical and Mathematical Sciences at BYU for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Linford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Bennett, R., Strum, J. et al. Screening phosphatidylcholine biomarkers in mouse liver extracts from a hypercholesterolemia study using ESI-MS and chemometrics. Anal Bioanal Chem 393, 643–654 (2009). https://doi.org/10.1007/s00216-008-2504-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2504-z

Keywords

Navigation