Skip to main content

Advertisement

Log in

Concomitant detection of CYP1A1 enzymatic activity and CYP1A1 protein in individual cells of a human urothelial cell line using a bilayer microfluidic device

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To understand molecular networking at the cellular level, analyses of processes and effects at the single-cell level are most appropriate. Usual biochemical or molecular biological analyses are based on integrated signals of numerous cells which differ, however, in their expression and activity profiles. Here we show that it is possible to determine different types of properties of individual cells by means of a specifically designed microfluidic device. As part of investigations to characterize the human urothelial cell line 5637 as a potential model system for studies of toxic and carcinogenic effects on urothelial cells, we use this cell line to assign cytochrome P450 activity, and expression of the enzymes involved, to individual cells. It is shown that the cell population is very heterogeneous with respect to the extent and kinetics of CYP1A1-dependent ethoxyresorufin O-deethylase (EROD). This is also true for the cells’ CYP1A1 protein content. With some exceptions, the EROD activity largely coincides with the presence of CYP1A1 protein in the cells. The results obtained with the microfluidic device are promising and open up new perspectives with regard to multi-property determinations in individual cells and to studies focusing on the biochemical and molecular heterogeneity of cells.

Formation of fluorescent resorufin from ethoxyresorufin by cytochrome P450 activity in urothelial cells attached within the chamber of a microfluidic device

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3908

    Article  CAS  Google Scholar 

  2. Keenan TM, Folch A (2008) Lab Chip 8:34–57

    Article  CAS  Google Scholar 

  3. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Chem Biol 10:123–130

    Article  CAS  Google Scholar 

  4. Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2008) Lab Chip 8:68–74

    Article  CAS  Google Scholar 

  5. Ryley J, Pereira-Smith OM (2006) Yeast 23:1065–1073

    Article  CAS  Google Scholar 

  6. Cai L, Friedman N, Xie XS (2006) Nature 440:358–362

    Article  CAS  Google Scholar 

  7. Charvin G, Cross FR, Siggia ED (2008) PLoS ONE 1:e1468

    Article  Google Scholar 

  8. Rao CV, Wolf DM, Arkin AP (2002) Nature 420:231–237

    Article  CAS  Google Scholar 

  9. Wilson CL (2004) Toxicol Sci 78:178–180

    Article  CAS  Google Scholar 

  10. Plöttner S, Selinski S, Bolt HM, Degen GH, Hengstler JG, Roos PH, Föllmann W (2008) Arch Toxicol doi:10.1007/s00204-008-0329-3

  11. Dörrenhaus A, Müller T, Roos PH (2007) Arch Toxicol 81:19–25

    Article  Google Scholar 

  12. Raser JM, O’Shea EK (2005) Science 309:2010–2013

    Article  CAS  Google Scholar 

  13. Tárnok A, Bocsi J, Brockhoff G (2006) Cell Prolif 39:495–505

    Article  Google Scholar 

  14. Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, Fujii-Kuriyama Y, Ishikawa T (2000) Proc Natl Acad Sci USA 97:779–782

    Article  CAS  Google Scholar 

  15. Ma Q, Lu AY (2007) Drug Metab Dispos 35:1009–1016

    Article  CAS  Google Scholar 

  16. Peterman MC, Noolandi J, Blumenkranz MS, Fishman HA (2004) Proc Natl Acad Sci USA 101:9951–9954

    Article  CAS  Google Scholar 

  17. Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) J Am Chem Soc 127:13928–13933

    Article  CAS  Google Scholar 

  18. Schumann CA, Dittrich PS, Franzke J, Manz A (2007) Proc μTAS 1:766

    Google Scholar 

  19. Ros A (2008) Anal Bioanal Chem 390:799–800

    Article  CAS  Google Scholar 

  20. Honda A, Komatsu H, Kato D, Ueda A, Maruyama K, Iwasaki Y, Ito T, Niwa O, Suzuki K (2008) Anal Sci 24:55–66

    Article  CAS  Google Scholar 

  21. Martini J, Hellmich W, Greif D, Becker A, Merkle T, Ros R, Ros A, Toensing K, Anselmetti D (2007) Subcell Biochem 43:301–321

    Article  Google Scholar 

  22. Lovchik R, van Arx C, Viviani A, Delamarche E (2008) Anal Bioanal Chem 390:801–808

    Article  CAS  Google Scholar 

  23. Ino K, Okochi M, Konishi N, Nakatochi M, Imai R, Shikida M, Ito A, Honda H (2008) Lab Chip 8:134–142

    Article  CAS  Google Scholar 

  24. Li X, Ling V, Li PC (2008) Anal Chem 80:4095–4102

    Article  CAS  Google Scholar 

  25. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao SR, Omori M, Tamiya E, Muraguchi A (2005) Anal Chem 77:8050–8056

    Article  CAS  Google Scholar 

  26. Di Carlo D, Wu LY, Lee LP (2006) Lab Chip 6:1445–1449

    Article  Google Scholar 

  27. Burke MD, Thompson S, Elcombe CR, Halpert J, Haaparanta T, Mayer RT (1985) Biochem Pharmacol 34:3337–3345

    Article  CAS  Google Scholar 

  28. Bengtsson M, Ståhlberg A, Rorsman P, Kubista M (2005) Genome Res 15:1388–1392

    Article  CAS  Google Scholar 

  29. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Science 307:1962–1965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of Inge Bichbäumer is gratefully acknowledged. Financial support by the European Community (CellPROM project, contract no. NMP4-CT-2004-500039 under the 6th Framework Program for Research and Technological Development) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Roos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, C.A., Dörrenhaus, A., Franzke, J. et al. Concomitant detection of CYP1A1 enzymatic activity and CYP1A1 protein in individual cells of a human urothelial cell line using a bilayer microfluidic device. Anal Bioanal Chem 392, 1159–1166 (2008). https://doi.org/10.1007/s00216-008-2378-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2378-0

Keywords

Navigation