Skip to main content
Log in

Testing for spatial group-wise heteroskedasticity in spatial autocorrelation regression models: Lagrange multiplier scan tests

  • Special Issue paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a spatial group-wise heteroskedasticity test based on the scan approach, specifically developed for spatial autocorrelation regression models (spatial lag and spatial error models): the “scan-LM test.” Based on the Lagrange multiplier (LM) principle, its main advantage lies in its comparative ease of implementation as it is not necessary to obtain the maximum likelihood estimations for the alternative hypothesis. Moreover, when rejecting the null hypothesis, this test identifies the shape and size of the spatial clusters with different residual variance, a feature which proves very useful for specification search of the regression model. Another important benefit of the scan-LM test is that it does not require the specification of a spatial weights matrix. An extensive Monte Carlo simulation confirms the good properties of the scan-LM test in terms of size and power. This test is also robust in the presence of non-normality and other forms of a spatial heteroskedasticity. We finally propose an application on housing prices in the agglomeration of Madrid for a specific submarket: the attics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The complete derivation of the tests is presented in Appendices 1 and 2.

  2. Districts are official administrative units defined by the Spanish National Statistics Office (INE) and neighborhoods, which are nested in the districts, are officious divisions recognized by the city council (http://www.munimadrid.es). Neighborhoods are characterized by certain homogeneity in terms of population density, infrastructure, historical and socioeconomic features.

  3. Running on a desktop with Inter(R) Core i7 with 2.40 GHz, and 16 Gb of Ram, the elapsed CPU times for performing the Scanσ test -in this case, for 886 observations- was 2700 s.

References

  • Anselin L (1988) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr Anal 20(1):1–17

    Article  Google Scholar 

  • Anselin L, Bera A (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles D (eds) Handbook of applied economic statistics. Marcel Dekker, New York, pp 237–290

    Google Scholar 

  • Anselin L, Lozano-Gracia N (2008) Spatial hedonic methods. In: Mills T, Patternson K (eds) Palgrave handbook of econometrics: volume 2: applied econometrics. Springer, Berlin, pp 1213–1243

    Google Scholar 

  • Anselin L, Rey S (1991) Properties of test for spatial dependence in linear regression models. Geogr Anal 23(2):112–131

    Article  Google Scholar 

  • Anselin L, Bera AK, Florax R, Yoon MJ (1996) Simple diagnostic test for spatial dependence. Reg Sci Urban Econ 26(1):77–104

    Article  Google Scholar 

  • Baltagi BH, Yang Z (2013) Standardized LM test for spatial error dependence in linear or panel regressions. Econ J 16(1):103–134

    Google Scholar 

  • Born B, Breitung J (2011) Simple regression-based test for spatial dependence. Econ J 14(2):330–342

    Google Scholar 

  • Burridge P (1980) On the Cliff-Ord test for spatial correlation. J R Stat Soc Ser B Stat Methodol 42(1):107–108

    Google Scholar 

  • Burridge P (2011) A research agenda on general-to-specific spatial model search. Investig Reg 21:71–90

    Google Scholar 

  • Chasco C, Le Gallo J (2013) The impact of objective and subjective measures of air quality and noise on house prices: a multilevel approach for downtown Madrid. Econ Geogr 89:127–148

    Article  Google Scholar 

  • Chasco C, Le Gallo J, López FA (2018) A scan test for spatial groupwise heteroskedasticity in cross-sectional models with an application on house prices in Madrid. Reg Sci Urban Econ 68:226–238

    Article  Google Scholar 

  • Cheshire P, Sheppard S (1998) Estimating the demand for housing, land, and neighborhood characteristics. Oxford Bull Econ Stat 60:357–382

    Article  Google Scholar 

  • Dall’erba S, Bitter C (2010) Using a spatial endogenous method to detect housing submarkets: an application to Tucson. Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD). https://doi.org/10.20990/aacd.14548

    Article  Google Scholar 

  • Dall’Erba S, Le Gallo J (2008) Regional convergence and the impact of European structural funds over 1989–1999: a spatial econometric analysis. Papers Reg Sci 87(2):219–244

    Article  Google Scholar 

  • Elhorst P (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28

    Article  Google Scholar 

  • Fischer MM, Stirböck C (2006) Pan-European regional income growth and club-convergence. Insights from a spatial econometric perspective. Ann Reg Sci 40:693–721

    Article  Google Scholar 

  • Fletcher M, Gallimore P, Mangan J (2000) Heteroscedasticity in hedonic house price models. J Prop Res 17(2):93–108

    Article  Google Scholar 

  • Florax RJGM, Folmer H, Rey SJ (2003) Specification searches in spatial econometrics: the relevance of Hendry’s methodology. Reg Sci Urban Econ 33:557–579

    Article  Google Scholar 

  • Gantes Y (2017) Objetivo: ático en Las Salesas, el barrio de los bohemios con dinero de Madrid. elEconomista.es, 14/07/2017

  • Goodman AC, Thibodeau TG (1995) Age-related heteroskedasticity in hedonic house price equations. J Hous Res 6(1):25–42

    Google Scholar 

  • Goodman AC, Thibodeau TG (1997) Dwelling-age-related heteroskedasticity in hedonic house price equations: an extension. J Hous Res 8(2):299–317

    Google Scholar 

  • Guo P, Lihu L, Zhengming Q (2015) Robust test for spatial error model: considering changes of spatial layouts and distribution misspecification. Commun Stat Simul Comput 44(2):402–416

    Article  Google Scholar 

  • Kelejian HH, Robinson DP (1998) A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results. Reg Sci Urban Econ 28(4):389–417

    Article  Google Scholar 

  • Kelejian HH, Robinson DP (2004) The influence of spatially correlated heteroskedasticity on test for spatial correlation. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics. Springer, Berlin, pp 79–97

    Chapter  Google Scholar 

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14:799–810

    Article  Google Scholar 

  • Kulldorff M, Huang L, Konty K (2009) A scan statistic for continuous data based on the normal probability model. Int J Health Geogr 8:58–73

    Article  Google Scholar 

  • LeSage J, Pace RK (2009) Introduction to spatial econometrics. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • López FA, Chasco C, Le Gallo J (2015) Exploring scan methods to test spatial structure with an application to housing prices in Madrid. Papers Reg Sci 94:317–356

    Google Scholar 

  • Mur J, Angulo A (2009) Model selection strategies in a spatial setting: some additional results. Reg Sci Urban Econ 39:200–213

    Article  Google Scholar 

  • Ord K, Getis A (2012) Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48:529–539

    Article  Google Scholar 

  • Orford S (2000) Modelling spatial structures in local housing market dynamics: a multilevel perspective. Urban Stud 37:1643–1671

    Article  Google Scholar 

  • Robinson PM, Rossi F (2014) Improved Lagrange multiplier test in spatial autoregressions. The Econ J 17(1):139–164

    Google Scholar 

  • Sánchez-Martín A (2015) Los áticos, las estrellas del mercado. El Mundo, 22/07/2015

  • Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr 4(1):11

    Article  Google Scholar 

  • Zhang Z, Assunção R, Kulldorff M (2010) Spatial scan statistics adjusted for multiple clusters. J Probab Stat. https://doi.org/10.1155/2010/642379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando A. López.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Spanish Ministry of Economics and Competitiveness (ECO2015-65758-P). F.A. López acknowledges the financial support from program Groups of Excellence of the Region of Murcia, the Fundacion Seneca, Science and Technology Agency of the region of Murcia Project 19884/GERM/15. The usual disclaimers apply.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Appendices

Appendix 1: Derivation of the scan-SAR LM test

In order to obtain the \( {\text{LM}} - {\text{Scan}}_{\text{SAR}}^{\text{SGWH}} \) test, we evaluate the gradient of the log-likelihood function:

$$ \begin{aligned} \frac{\partial l}{\partial \beta } & = (Ay - X\beta )'\varOmega^{ - 1} X \\ \frac{\partial l}{\partial \rho } & = -\, tr\,A^{ - 1} W + (Ay - X\beta )'\varOmega^{ - 1} Wy \\ \frac{\partial l}{{\partial \sigma^{2} }} & = -\, \frac{1}{2}tr\,\varOmega^{ - 1} H_{{\sigma^{2} }} + \frac{1}{2}(Ay - X\beta )'\varOmega^{ - 2} H_{{\sigma^{2} }} (Ay - X\beta ) \\ \frac{\partial l}{\partial h} & = - \,\frac{1}{2}tr\,\varOmega^{ - 1} H_{h} + \frac{1}{2}(Ay - X\beta )'\varOmega^{ - 2} H_{h} (Ay - X\beta ) \\ \end{aligned} $$

where A = I − ρW; \( H_{h} = \frac{\partial \varOmega }{\partial h} \) and \( H_{{\sigma^{2} }} = \frac{\partial \varOmega }{{\partial \sigma^{2} }} \)

Under the null hypothesis, we have:

$$ g(\theta )|_{{H_{0} }} = \left[ {\begin{array}{*{20}l} 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ {g_{\text{SAR}} (h_{\sigma } ) = - \frac{{n_{Z} }}{2} + \frac{1}{2}\frac{{u'_{Z} u_{Z} }}{{\sigma^{2} }}} \hfill \\ \end{array} } \right] $$

where nZ = #(Z) and u = Ay − . By uz, we denote the elements of the vector u that belong to zone Z. In order to obtain the elements of the information matrix \( I = E\left[ {\frac{{\partial^{2} l}}{\partial \theta \partial \theta '}} \right] \), it is necessary to derive the following elements under the null:

$$ \begin{aligned} I_{\beta \beta } & = X'\varOmega^{ - 1} X \\ I_{\beta \rho } & = X'\varOmega^{ - 1} WA^{ - 1} X\beta \\ I_{{\beta \sigma^{2} }} & = 0 \\ I_{\beta h} & = 0 \\ I_{\rho \rho } & = tr\,WA^{ - 1} WA^{ - 1} + tr\,\varOmega A'^{ - 1} W'\varOmega^{ - 1} WA^{ - 1} + \beta 'X'A'^{ - 1} W'\varOmega^{ - 1} WA^{ - 1} X\beta \\ I_{{\rho \sigma^{2} }} & = tr\,\varOmega^{ - 1} H_{{\sigma^{2} }} WA^{ - 1} \\ I_{\rho h} & = tr\,\varOmega^{ - 1} H_{h} WA^{ - 1} \\ I_{{\sigma^{2} \sigma^{2} }} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{{\sigma^{2} }} H_{{\sigma^{2} }} \\ I_{{\sigma^{2} h}} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{{\sigma^{2} }} H_{h} \\ I_{hh} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{h} H_{h} \\ \end{aligned} $$

The information matrix under the null has the following expression:

$$ I_{\text{SAR}} (\theta )|_{{H_{0} }} = \frac{1}{{\sigma^{2} }}\left[ {\begin{array}{llll} {X'X} \hfill &\quad {X'WA^{ - 1} X\beta } \hfill &\quad 0 \hfill &\quad 0 \hfill \\ { - - } \hfill &\quad {\sigma^{2} tr\,WA^{ - 1} WA^{ - 1} + \sigma^{2} tr\,H + \beta 'X'HX\beta } \hfill &\quad {tr\,WA^{ - 1} } \hfill &\quad {tr\,HWA^{ - 1} } \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\frac{n}{{\sigma^{2} }}} \hfill &\quad {\frac{{n_{Z} }}{2}} \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\sigma^{2} n_{Z} } \hfill \\ \end{array} } \right] $$

with \( H = A'^{ - 1} W'WA^{ - 1} \)

The LM test has the following general expression:

$$ {\text{LM}}(Z)_{\text{SAR}}^{\text{SGWH}} = \left[ {g(\theta )|_{{H_{0} }} } \right]'\left[ {I_{\text{SAR}} (\theta )|_{{H_{0} }} } \right]^{ - 1} \left[ {g(\theta )|_{{H_{0} }} } \right] $$

After, some computations, it can be expressed as:

$$ {\text{LM}} - {\text{Scan}}_{\text{SAR}}^{\text{SGWH}} = \mathop {sup}\limits_{Z \in \varTheta } \frac{{g_{\text{SAR}} (h_{\sigma } )^{2} a^{44} }}{{det(I_{\text{SAR}} (\theta )|_{{H_{0} }} )}} $$

The expression of the determinant of the information matrix can be written in compact form as:

$$ \begin{aligned} \det (I(\theta )|_{{H_{0} }} ) & = \left( {\frac{1}{{\sigma^{2} }}} \right)^{k + 3} \left[ {\frac{{\sigma^{2} n_{Z} }}{2}\det (A_{33} ) - \frac{{n_{Z} }}{2}\left( {\frac{{n_{Z} }}{2}\det (A_{22} ) - trWA^{ - 1} \det (X^{\prime }X)trHWA^{ - 1} } \right)} \right. \\ & \quad + \;\left. {trHWA^{ - 1} \det (X^{\prime }X)\left( {\frac{{n_{Z} }}{2}trWA^{ - 1} - \frac{n}{{2\sigma^{2} }}trHWA^{ - 1} } \right)} \right] \\ \end{aligned} $$

where A22 is the following matrix that does not depend upon Z,

$$ A_{22} = \left[ {\begin{array}{ll} {X^{\prime } X} \hfill &\quad {X^{\prime } WA^{ - 1} X\beta } \hfill \\ { - - } \hfill &\quad {\sigma^{2} trWA^{ - 1} WA^{ - 1} + \sigma^{2} trH + \beta^{\prime } X^{\prime } HX\beta } \hfill \\ \end{array} } \right] $$

and

$$ A_{33} = \left[ {\begin{array}{*{20}l} {X^{\prime } X} \hfill &\quad {X^{\prime } WA^{ - 1} X\beta } \hfill &\quad 0 \hfill \\ { - - } \hfill &\quad {\sigma^{2} trWA^{ - 1} WA^{ - 1} + \sigma^{2} trH + \beta^{\prime } X^{\prime} HX\beta } \hfill & \quad{trWA^{ - 1} } \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\frac{n}{{\sigma^{2} }}} \hfill \\ \end{array} } \right] $$

finally, \( a^{44} \) is a term that does not depend on the set Z

$$ a^{44} = \left( {\frac{1}{{\sigma^{2} }}} \right)^{k + 2} det\left( {\left[ {\begin{array}{lll} {X'X} \hfill &\quad {X'WA^{ - 1} X\beta } \hfill &\quad 0 \hfill \\ {} \hfill &\quad {\sigma^{2} tr\,WA^{ - 1} WA^{ - 1} + \sigma^{2} tr\,H + \beta 'X'HX\beta } \hfill &\quad {tr\,WA^{ - 1} } \hfill \\ {} \hfill &\quad {} \hfill &\quad {\frac{1}{2}\frac{n}{{\sigma^{2} }}} \hfill \\ \end{array} } \right]} \right) $$

Appendix 2: Derivation of the scan-SEM LM test

In order to obtain the \( {\text{LM}} - {\text{Scan}}_{\text{SEM}}^{\text{SGWH}} \) test, we evaluate the gradient of the log-likelihood function:

$$ \begin{aligned} \frac{\partial l}{\partial \beta } & = (y - X\beta )'B'\varOmega^{ - 1} BX \\ \frac{\partial l}{\partial \rho } & = - tr\,B^{ - 1} W + (y - X\beta )'B'\varOmega^{ - 1} W(y - X\beta ) \\ \frac{\partial l}{{\partial \sigma^{2} }} & = - \frac{1}{2}tr\,\varOmega^{ - 1} H_{{\sigma^{2} }} + \frac{1}{2}(y - X\beta )'B'\varOmega^{ - 2} H_{{\sigma^{2} }} B(y - X\beta ) \\ \frac{\partial l}{\partial h} & = - \frac{1}{2}tr\,\varOmega^{ - 1} H_{h} + \frac{1}{2}(y - X\beta )'B'\varOmega^{ - 2} H_{h} B(y - X\beta ) \\ \end{aligned} $$

where B = I − λW; \( H_{h} = \frac{\partial \varOmega }{\partial h} \) and \( H_{{\sigma^{2} }} = \frac{\partial \varOmega }{{\partial \sigma^{2} }} \)

The gradient under the null hypothesis is:

$$ g(\theta )|_{{H_{0} }} = \left[ {\begin{array}{*{20}l} 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ {g_{\text{SEM}} (h_{\sigma } ) = - \frac{{n_{Z} }}{2} + \frac{1}{2}\frac{{v'_{Z} v_{Z} }}{{\sigma^{2} }}} \hfill \\ \end{array} } \right] $$

where v = Bu and by vZ, we denote the elements of the vector v that belong to zone Z.

In order to obtain the elements of the information matrix \( I = E\left[ {\frac{{\partial^{2} l}}{\partial \theta \partial \theta '}} \right] \) matrix, it is necessary to derive the following elements under the null:

$$ \begin{aligned} I_{\beta \beta } & = X'B'\varOmega^{ - 1} BX \\ I_{\beta \lambda } & = 0 \\ I_{{\beta \sigma^{2} }} & = 0 \\ I_{\beta h} & = 0 \\ I_{\lambda \lambda } & = tr\,WB^{ - 1} WB^{ - 1} + tr\,\varOmega B'^{ - 1} W'\varOmega^{ - 1} WB^{ - 1} \\ I_{{\lambda \sigma^{2} }} & = tr\,\varOmega^{ - 1} H_{{\sigma^{2} }} WB^{ - 1} \\ I_{\lambda h} & = tr\,\varOmega^{ - 1} H_{h} WB^{ - 1} \\ I_{{\sigma^{2} \sigma^{2} }} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{{\sigma^{2} }} H_{{\sigma^{2} }} \\ I_{{\sigma^{2} h}} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{{\sigma^{2} }} H_{h} \\ I_{hh} & = \frac{1}{2}tr\,\varOmega^{ - 2} H_{h} H_{h} \\ \end{aligned} $$

The information matrix under the null has the following expression:

$$ I_{\text{SEM}} (\theta )|_{{H_{0} }} = \frac{1}{{\sigma^{2} }}\left[ {\begin{array}{llll} {X'B'BX} \hfill &\quad 0 \hfill &\quad 0 \hfill &\quad 0 \hfill \\ { - - } \hfill &\quad {\sigma^{2} tr\,WB^{ - 1} WB^{ - 1} + \sigma^{2} tr\,B'^{ - 1} W'WB^{ - 1} } \hfill &\quad {tr\,WB^{ - 1} } \hfill &\quad {tr\,HWB^{ - 1} } \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\frac{n}{{\sigma^{2} }}} \hfill &\quad {\frac{{n_{Z} }}{2}} \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\sigma^{2} n_{Z} } \hfill \\ \end{array} } \right] $$

After some calculations, we obtain:

$$ {\text{LM}}_{\text{SEM}}^{\text{SGWH}} = \frac{{g_{\text{SEM}} (h_{\sigma } )^{2} b^{44} }}{{det(I_{\text{SEM}} (\theta )|_{{H_{0} }} )}} \sim \chi_{1}^{2} $$

where the term b44 is not dependent on the set Z

$$ \begin{aligned} b^{44} & = \left( {\frac{1}{{\sigma^{2} }}} \right)^{k + 2} det\left( {\left[ {\begin{array}{lll} {X'X} \hfill &\quad 0 \hfill &\quad 0 \hfill \\ { - - } \hfill &\quad {\sigma^{2} tr\,WB^{ - 1} \,WB^{ - 1} + \sigma^{2} tr\,B'^{ - 1} \,W'WB^{ - 1} } \hfill &\quad {tr\,WB^{ - 1} } \hfill \\ { - - } \hfill &\quad { - - } \hfill &\quad {\frac{1}{2}\frac{n}{{\sigma^{2} }}} \hfill \\ \end{array} } \right]} \right) \\ & = \left( {\frac{1}{{\sigma^{2} }}} \right)^{k + 2} det(X'X)\left( {\frac{1}{2}\frac{n}{{\sigma^{2} }}(\sigma^{2} tr\,WB^{ - 1} \,WB^{ - 1} + \sigma^{2} tr\,B'^{ - 1} \,W'WB^{ - 1} ) - (tr\,WB^{ - 1} )^{2} } \right) \\ \end{aligned} $$

The determinant of the information matrix can be expressed as a linear combination of terms that depend on Z:

$$ \det (I_{SEM} (\theta )|_{{H_{0} }} ) = \left( {\frac{1}{{\sigma^{2} }}} \right)^{k + 3} \det \left( {X^{\prime }{\rm B}^{\prime }BX} \right)\left[ \begin{aligned} I_{22} \frac{{nn_{Z} }}{4} + R_{Z} trWB^{ - 1} trH_{h} WB^{ - 1} - \frac{n}{{2\sigma^{2} }}\left( {trH_{h} WB^{ - 1} } \right)^{2} \hfill \\ - \frac{{\sigma^{2} n_{Z} }}{2}\left( {trWB^{ - 1} } \right)^{2} - \frac{{n_{Z}^{2} }}{4}I_{22} \hfill \\ \end{aligned} \right] $$

with

$$ I_{22} = \sigma^{2} trWB^{ - 1} WB^{ - 1} + \sigma^{2} trB^{ - 1} W^{\prime }WB^{. - 1} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gallo, J., López, F.A. & Chasco, C. Testing for spatial group-wise heteroskedasticity in spatial autocorrelation regression models: Lagrange multiplier scan tests. Ann Reg Sci 64, 287–312 (2020). https://doi.org/10.1007/s00168-019-00919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-019-00919-w

JEL Classification

Navigation