Skip to main content
Log in

The biomarker concept — strengths and weaknesses

  • Biomonitoring Of Environmental Hydrocarbons
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

This paper describes a simplified model which links the sedimentary concentration of selected biomarkers to their export primary production, their stability during transit to the anoxic sediment layer and the sediment bulk sedimentation rate. Manipulation of the biomarker data permits the individual effects of these processes to be separated. Examples demonstrate the use of this strategy in the evaluation of environmentally significant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eglinton G (1985) The alchemy of life: probing the molecular record. In: Nash S (ed) Science and Uncertainty. Sci Rev, pp 192–219

  2. Eckardt C-B, Eglinton G, Dyas L, Yendle P (1988) Org Geochem 13:573–582

    Google Scholar 

  3. Corey A-J, Xue-Min Cheng (1989) The logic of chemical synthesis. Wiley, Chichester New York, p 427

    Google Scholar 

  4. Mello M-R, Gaglianone P-C, Brassell S-C, Maxwell J-R (1988) Mar Pet Geol 5:205–223

    Google Scholar 

  5. Brassell S-C, Brereton R-G, Eglinton G, Grimalt JO, Liebezeit G, Marlowe IT, Pflaumman U, Sarnthein M (1986) Org Geochem 10:649–660

    Google Scholar 

  6. Marlowe I-T (1984) Lipids as palaeoclimatic indicators. Ph.D. thesis, University of Bristol

  7. Poynter J-G, Farrimond P, Brassell S-C, Eglinton G (1989) Molecular stratigraphic study of sediments from holes 658A and 660A, Leg 108. In: Ruddiman W, Sarnthein M (eds) Proc of the ODP, College Station, Texas, Sci Res, vol 108, pp 387–394

  8. Prahl F-G, de Lange G-J, Lyle M, Sparrow M-A (1989) Nature 341:434–436

    Google Scholar 

  9. Recka J, Maxwell J-R (1988) Tetrahedron Lett 21:2599–2600

    Google Scholar 

  10. Johansson E, Wold S, Sjodin K (1984) Anal Chem 56:1685–1688

    Google Scholar 

  11. Poynter J-G (1989) The recognition of palaeoclimatic signals in organic geochemical data. Ph.D. thesis, University of Bristol

  12. Poynter J-G, Eglinton G (1991) A possible link between the historical species succession of prymnesiophyte algae and time series describing long chain alkenone distributions: an application of chemotaxonomy (in preparation)

  13. Savitzky A, Golay J-E (1964) Anal Chem 36:1627–1639

    Google Scholar 

  14. Imbric J, Hays J-D, Martinson D-G, McIntyre A, Mix A-C, Morley J-J, Pisias N-G, Prell W-L, Shackleton N-J (1984) In: Berger A-L (ed) The orbital theory of pleistocene climate: support from a revised chronology of marine sediments 18O record. In: Milankovitch and Climate. Reidel, Dordrecht, The Netherlands, pp 269–305

    Google Scholar 

  15. Prell W-L, Imbrie J, Martinson D-J, Nicklas J-M, Pisias N-G, Harold F-S (1986) Palaeoceanography 1:137–162

    Google Scholar 

  16. Stransky K, Streibi M, Herout V (1967) In: Natural Waxes. VI. Collect Czech Chem Commun 32:3213–3220

    Google Scholar 

  17. White F (1983) The vegetation of Africa: a descriptive memoir to accompany the UNESCO AETFAT UNSO vegetation map of Africa. UNESCO, Paris

    Google Scholar 

  18. Poynter J-G, Farrimond P, Robinson N, Eglinton G (1989) Aeolian derived higher plant lipids in the marine sedimentary record: links with palaeoclimate. In: Leinen M, Sarnthein M (eds) Palaeoclimatology and palaeometeorology: modern and past patterns of global atmospheric transport. Kluwer, Academic Press, Dordrecht, The Netherlands, pp 435–462

    Google Scholar 

  19. Sarnthein M, Winn H, Zahn R (1987) Palaeoceanography of oceanic upwelling and the effect on Atmospheric CO2 and climatic change during deglaciation time. In: Berger W-H, Labeyrie L-D (eds) Abrupt climatic change. Reidel, Dordrecht, The Netherlands, pp 311–327

    Google Scholar 

  20. ten Haven H-L, Baas M, de Leeuw J-W, Schenck P-A, Brinkus H (1987) Mar Geol 64:149–167

    Google Scholar 

  21. Rossignol-Strick M, Nesteroff W, Olive P, Vergnaud-Grazzini C (1982) Nature 295:105–110

    Google Scholar 

  22. Bradshaw S-B, O'Hara S-C-M, Corner E-D-S, Eglinton G (1989) J Mar Biol Assoc UK 69:891–911

    Google Scholar 

  23. Brassell S-C, Eglinton G, Maxwell J-R (1983) Biochem Soc Trans 11:575–586

    Google Scholar 

  24. Teshima S, Kanazawa A, Okamoto H (1976) Bull Jap Soc Sci Fish 42:1273–1280

    Google Scholar 

  25. Ruddiman W, Sarnthein M (1989) Proc ODP Sci Results 108. College Station, Texas (Ocean Drilling Program)

  26. Goad L-J (1978) The sterols of marine invertebrates: composition, biosynthesis and metabolites. In: Scheuer P-A (ed). Marine natural products: chemical and biological perspectives. II. Academic Press, New York, pp 75–172

    Google Scholar 

  27. Harvey H-R, O'Hara S-C-M, Eglinton G, Corner E-D-S (1989) Org Geochem 14:232–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poynter, J., Eglinton, G. The biomarker concept — strengths and weaknesses. Fresenius J Anal Chem 339, 725–731 (1991). https://doi.org/10.1007/BF00321733

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321733

Keywords

Navigation