Skip to main content
Log in

AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

For the extension of the radiocarbon calibration curve beyond 10000 14C y BP, laminated sediment from Lake Soppensee (central Switzerland) was dated. The radiocarbon time scale was obtained using accelerator mass spectrometry (AMS) dating of terrestrial macrofossils selected from the Soppensee sediment. Because of an unlaminated sediment section during the Younger Dryas (10000–11000 14C y BP), the absolute time scale, based on counting annual layers (varves), had to be corrected for missing varves. The Soppensee radiocarbon-verve chronology covers the time period from 6000 to 12000 14C y BP on the radiocarbon time scale and 7000 to 13000 calendar y BP on the absolute time scale. The good agreement with the tree ring curve in the interval from 7000 to 11450 cal y BP (cal y indicates calendar year) proves the annual character of the laminations. The ash layer of the Vasset/Killian Tephra (Massif Central, France) is dated at 8230±140 14C y BP and 9407±44 cal y BP. The boundaries of the Younger Dryas biozone are placed at 10986±69 cal y BP (Younger Dryas/Preboreal) and 1212±86 cal y BP (Alleröd/Younger Dryas) on the absolute time scale. The absolute age of the Laacher See Tephra layer, dated with the radiocarbon method at 10 800 to 11200 14C y BP, is estimated at 12350 ± 135 cal y BP. The oldest radiocarbon age of 14190±120 14C y BP was obtained on macrofossils of pioneer vegetation which were found in the lowermost part of the sediment profile. For the late Glacial, the offset between the radiocarbon (10000–12000 14C y BP) and the absolute time scale (11400–13000 cal y BP) in the Soppensee chronology is not greater than 1000 years, which differs from the trend of the U/Th-radiocarbon curve derived from corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrée M, Oeschger H, Siegenthaler U, Ammann B, Tobolski K (1986) 14C dating of macrofossils in lake sediment. Radiocarbon 28:411–416

    Google Scholar 

  • Anthony RS (1977) Iron-rich rhythmically laminated sediments in Lake of the Clouds, northeastern Minnesota. Limnol Oceanogr 22:45–54

    Google Scholar 

  • Bard E, Fairbanks RG, Arnold M, Hamelin B (1991) 230Th/234U and 14C ages obtained by mass spectrometry on corals from Barbados (West Indies), Isabela (Galapagos) and Mururoa (French Polynesia). In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies. Springer, Berlin Heidelberg New York, pp 103–110

    Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14C timescale over the past 30000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–410

    Google Scholar 

  • Bogaard P, Schminke HU (1985) Laacher See Tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geol Soc Am Bull 96:1554–1571

    Google Scholar 

  • Bonani G, Beer J, Hofmann H, Synal HA, Suter M, Wölfli W, Pfleiderer C, Junghans C, Münnich KO (1987) Fractionation, precision and accuracy in 14C and 13C measurements. Nucl Instrum Methods B29:87–90

    Google Scholar 

  • Boyko-Diakonow M (1979) The laminated sediments of Crawford lake, Southern Ontario, Canada. In: Schlüchter C (ed) Moraines and varves. Balkema, Rotterdam, pp 300–308

    Google Scholar 

  • De Geer G (1912) A geochronology of the last 12000 years. XI. International Geological Congress CR 1 241–253

    Google Scholar 

  • Edwards RL, Chen JH, Wasserburg GJ (1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500000 years. Earth Planet Sci Lett 81:175–192

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Article  Google Scholar 

  • Juvigné EH (1991) Distribution de vastes retombées volcaniques originaires de I'Eifel et du Massif Central aux temps post-glaciaires dans le NE de la France et les regions voisines. C R Acad Sci Paris 312:415–420

    Google Scholar 

  • Juvigné EH, Kronnenberg SB, Veldkamp A, El Arabi A, Vernet G (1993) Widespread Alleröd and Boreal trachyandesitic to trachytic tephra layer as stratigraphic markers in the French Central Massif. Quaternaire (in press)

  • Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York Berlin Heidelberg, pp 295–323

    Google Scholar 

  • Kempe S, Degens ET (1979) Varves in the Black Sea and in Lake Van (Turkey). In: Schlüchter C (ed) Moraines and varves. Balkema, Rotterdam, pp 300–308

    Google Scholar 

  • Kromer B, Becker B (1991) Tree-ring 14C calibration at 10000 BP. In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies. Springer, Berlin Heidelberg New York, pp 3–11

    Google Scholar 

  • Kromer B, Becker B (1993) German oak and pine 14C calibration, 7200 BC to 9400 BC. Radiocarbon 35:125–135

    Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on the Earth. Handbook of physics 46/2:551–612

    Google Scholar 

  • Lister G (1988) A 15000-year isotopic record from Lake Zurich of deglaciation and climatic change in Switzerland. Quat Res 29:129–141

    Google Scholar 

  • Lotter AF (1989) Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquat Sci 52:19–30

    Google Scholar 

  • Lotter AF (1991a) Absolute dating of the Late-Glacial period in Switzerland using annually laminated sediments. Quat Res 35:321–330

    Google Scholar 

  • Lotter AF (1991b) How long was the Younger Dryas? Preliminary evidence from annually laminated sediments of Soppensee (Switzerland). Hydrobiol 214:53–57

    Google Scholar 

  • Lotter AF, Ammann B, Beer J, Hajdas I, Sturm M (1991) A step towards an absolute time-scale for the Late-Glacial: annually laminated sediments from Soppensee (Switzerland). In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies. Springer, Berlin Heidelberg New York, pp 45–68

    Google Scholar 

  • Ludlam SD (1979) Rhythmite deposition in lakes of the northeastern United States. In: Schlüchter C (ed) Moraines and varves. Balkema, Rotterdam, pp 295–307

    Google Scholar 

  • Merkt J (1971) Zuverlässige Auszählungen von Jahresschichten in Seesedimenten mit Hilfe von Gross-Dünnschliffen. Archiv Hydrobiol 69:145–154

    Google Scholar 

  • Nipkow F (1921) Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z Hydrol 1:100–122

    Google Scholar 

  • O'Sullivan PE (1983) Annually-laminated lake sediments and the study of Quaternary environmental changes — a review. Quat Sci Rev 1:245–313

    Google Scholar 

  • Olsson I (1986) Radiometric methods. In: Berglund B (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 273–312

    Google Scholar 

  • Olsson I (1991) Accuracy and precision in sediment chronology. Hydrobiology 214:25–34

    Google Scholar 

  • Pazdur A, Pazdur MF, Wicik B, Wieckowski K (1987) Radiocarbon chronology of annually laminated sediments from the Gosciaz Lake. Bull Pol Acad Sci; Earth Sci 35:139–145

    Google Scholar 

  • Peglar S, Fritz SC, Alapieti T, Saarnisto M, Birks HJB (1984) Composition and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas 13:13–28

    Google Scholar 

  • Ralska-Jasiewiczowa M, Wicik B, Wieckowski K (1987) Lake Gosciaz — a site of annually laminated sediments covering 12000 years. Bull Pol Acad Sci; Earth Sci 35:127–137

    Google Scholar 

  • Rozanski K, Goslar T, Dulinski M, Kuc T, Pazdur MF, Walanus A (1991) The late Glacial-Holocene transition in Central Europe derived from isotope studies of laminated sediments from Lake Gosciaz (Poland). In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies. Springer, Berlin Heidelberg New York, pp 69–80

    Google Scholar 

  • Saarnisto M, Huttunen P, Tolonen K (1977) Annual lamination of sediments in Lake Lovojarvi, southern Finland, during the past 600 years. Ann Bot Fennici 14:35–45

    Google Scholar 

  • Schlüchter C (1988) The deglaciation of the Swiss-Alps: a paleoclimatic event with chronological problems. Bull Assoc Fr Quat 2/3:141–145

    Google Scholar 

  • Simola H (1977) Diatom succession in the formation of annually laminated sediment in Lovojarvi, a small eutrophicated lake. Ann Bot Fenn 14:143–148

    Google Scholar 

  • Strömberg B (1985) Revision of the lateglacial Swedish varve chronology. Boreas 14:101–105

    Google Scholar 

  • Stuiver M (1971) Evidence for the variation of atmospheric 14C content in the Late Quaternary. In: Turekian KK (ed) The Late Cenozoic glacial ages. Yale University Press, New Haven, London, pp 57–70

    Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Stuiver M, Kromer B, Becker B, Ferguson CW (1986) Radiocarbon age calibration back to 13000 years BP and the 14C age matching of the German oak and US Bristlecone pine chronologies. Radiocarbon 28:969–979

    Google Scholar 

  • Stuiver M, Braziunas TF, Becker B, Kromer B (1991) Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quat Res 35:124

    Google Scholar 

  • Sturm M, Matter A (1978) Turbidites and varves in Lake Brienz (Switzerland): deposition of elastic detritus by density currents. In: Matter A, Tucker ME (eds) Modern and ancient sediments. Blackwell, Oxford, pp 147–168

    Google Scholar 

  • Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993) The ‘flickering switch’ of late Pleistocene climate change. Nature 361:432–436

    Google Scholar 

  • Tolonen K (1978) Palaeoecology of annually laminated sediments in Lake Ahvenainen, S. Finland. Comparison of dating methods. Ann Bot Fenn 15:209–222

    Google Scholar 

  • Vogel JS, Southon JR, Nelson DE, Brown TA (1984) Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl Instrum Methods B5:289–293

    Google Scholar 

  • Vogel JS, Southon JR, Nelson DE (1987) Catalyst and binder effects in the use of filamentous graphite for AMS. Nucl Instrum Methods B29:50–56

    Google Scholar 

  • Vogel JS, Briskin M, Nelson DE, Southon JR (1989) Ultra-small carbon samples and the dating of sediments. Radiocarbon 31:601–609

    Google Scholar 

  • Welten M (1944) Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröff Geobot Inst Rübel, Zürich

  • Zbinden H, Andrée M, Oeschger H, Ammann B, Lotter A, Bonani G, Wölfh W (1989) Atmospheric radiocarbon at the end of the Late Glacial: an estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediment. Radiocarbon 31:795–804

    Google Scholar 

  • Zolitschka B (1990) Spätquartäre Jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Doc Natur 60:1–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajdas, I., Ivy, S.D., Beer, J. et al. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Climate Dynamics 9, 107–116 (1993). https://doi.org/10.1007/BF00209748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209748

Keywords

Navigation