Fottea 2024, 24(1):23-26 | DOI: 10.5507/fot.2023.008

The CIMS (Cyanobacterial ITS motif slicer) for molecular systematics

Nicolas A. Labrada1*, Callahan A. McGovern1, Aimee L. Thomas1, Anne C. Hurley1, Marie R. Mooney1, Dale A. Casamatta1
Department of Biology, College of Arts and Sciences, University of North Florida, 1 UNF Drive, Jacksonville, FL-32224, USA; *Corresponding author e-mail: nlab@fastmail.com

The 16S-23S rRNA Internal Transcribed Spacer (ITS) is a commonly employed taxonomic marker in cyanobacterial systematics. Due to numerous challenges in articulating phylogenetic relationships within this ubiquitous, ancient lineage, a polyphasic approach including 16S rRNA sequence data, ecology, morphology, and ITS secondary structure analysis has become the standard. In particular, the ITS motifs are being utilized in the erection of novel and cryptic taxa. However, this is challenging as researchers must manually mine and parse sequence data to visually find and identify ITS structures. This painstaking process deters researchers from using ITS motifs, may lead to inconsistencies, and is a rather dry, tedious enterprise. Thus, we present a simple, user-friendly web-based application for help in finding and preparing the most common cyanobacterial motifs (e.g., the Box-B, D1-D1´, tRNAs, etc.). After extensive testing, we note that the most common motifs are recovered at ca. 97%. These motifs can then be easily exported into Mfold or other similar folding packages. We hope that this will both provide a valuable tool for researchers but will also facilitate new discoveries and allow for greater consistency in publishing ITS comparisons. The tool can be accessed at www.phylo.dev.

Keywords: Folding motifs, rRNA, secondary structures, taxonomy, 16S

Received: October 27, 2022; Revised: January 12, 2023; Accepted: February 2, 2023; Prepublished online: February 20, 2023; Published: March 27, 2024Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Labrada, N.A., McGovern, <.A., Thomas, A.L., Hurley, A.C., Mooney, M.R., & Casamatta, D.A. (2024). The CIMS (Cyanobacterial ITS motif slicer) for molecular systematics. Fottea24(1), 23-26. doi: 10.5507/fot.2023.008
Download citation

Attachments

Download fileDr._Dale_Casamatta_Ph.D._fot_000516_src-0502TableS2.xlsx

File size: 11.01 kB

Download fileDr._Dale_Casamatta_Ph.D._fot_000516_src-0402TableS1.xlsx

File size: 18.32 kB

References

  1. Baldarelli, L.M; Pietrasiak, N.; Osorio-Santos, K. & Johansen, J.R. (2022): Mojavia aguilerae and M. dolomitestris - two new Nostocaceae (Cyanobacteria) species from the Americas. - Journal of Phycology 58: 502-516. Go to original source...
  2. Buchheim, M.A.; Keller, A.; Koetschan, C.; Förster, F.; Merget, B. & Wolf, M. (2011): Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. - PLoS one 6: e16931. DOI: 10.1371/journal.pone.0016931 Go to original source...
  3. Casamatta, D.A.; Johansen, J.R.; Vis, M.L. & Broadwater, S. (2005): Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). - Journal of Phycology 41: 421-438. Go to original source...
  4. Cock, P.J.; Antao, T.; Chang, J.T; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B. & de Hoon, M.J. (2009): Biopython: freely available Python tools for computational molecular biology and bioinformatics. - Bioinformatics 25: 1422-1423. Go to original source...
  5. Condon, C.; Squires, C. & Squires, C.L. (1995). Control of rRNA transcription in Escherichia coli. - Microbiological reviews 59: 623-645. Go to original source...
  6. Espejo, R.T. & Plaza, N. (2018): Multiple ribosomal RNA operons in Bacteria: their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. - Frontiers in Microbiology 9: 1232. Go to original source...
  7. Iteman, I.; Rippka, R.; Tandeau de Marsac, N. & Herdman, M. (2000): Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. - Microbiology 146: 1275-1286. Go to original source...
  8. Johansen, J.R. & Casamatta, D.A. (2005): Recognizing diversity through adoption of a new species paradigm. - Algological Studies 117: 71-93. Go to original source...
  9. Johansen, J.R.; Kovacik, L.; Casamatta, D.A.; Fučiková, K. & Kaštovský, J. (2011). Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). - Nova Hedwigia, 92: 283-302. Go to original source...
  10. Kabirnataj, S.; Nematzadeh, G.A.; Talebi, A.F.; Saraf, A.; Suradkar, A.; Tabatabaei, M. & Singh, P. (2020): Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. - International Journal of Systematic and Evolutionary Microbiology 70: 1-9. Go to original source...
  11. Koetschan, C.; Kittelmann, S.; Lu, J.; Al-Halbouni, D.; Jarvis, G.N.; Müller, T.; Wolf, M. & Janssen, P.H. (2014): Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). - PloS one 9: e91928. DOI: https://doi.org/10.1371/journal.pone.0091928 Go to original source...
  12. Mai, J.C. & Coleman, A.W. (1997) : The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. - Journal of Molecular Evolution 44: 258-271. DOI: https://doi.org/10.1007/pl00006143 Go to original source...
  13. Mai, T.; Johansen, J.; Pietrasiak, N.; Bohunická, M. & Martin, M.P. (2018): Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. - Phytotaxa 365: 1-59. Go to original source...
  14. Řeháková, K.; Johansen, J.R.; Casamatta, D.A.; Xuesong, L. & Vincent, J. (2007): Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. - Phycologia 46: 481-502. Go to original source...