Serum IL-33 as a biomarker in different diseases: useful parameter or much need for clarification?

Authors

  • Stefan Erfurt Department of Medicine 1, University Hospital Brandenburg, Medical School (MHB) Theodor Fontane, Brandenburg - Germany https://orcid.org/0000-0001-8892-1805
  • Meike Hoffmeister Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Brandenburg - Germany
  • Stefanie Oess Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, Brandenburg - Germany
  • Katharina Asmus Department of Medicine 1, University Hospital Brandenburg, Medical School (MHB) Theodor Fontane, Brandenburg - Germany
  • Oliver Ritter Department of Medicine 1, University Hospital Brandenburg, Medical School (MHB) Theodor Fontane, Brandenburg - Germany
  • Susann Patschan Department of Medicine 1, University Hospital Brandenburg, Medical School (MHB) Theodor Fontane, Brandenburg - Germany https://orcid.org/0000-0002-2286-7356
  • Daniel Patschan Department of Medicine 1, University Hospital Brandenburg, Medical School (MHB) Theodor Fontane, Brandenburg - Germany https://orcid.org/0000-0002-6914-5254

DOI:

https://doi.org/10.33393/jcb.2021.2327

Keywords:

Biomarker, IL-33, Inflammatory diseases, Noninflammatory diseases

Abstract

Interleukin-33 (IL-33), a member of the IL-1 family, is critically involved in the modulation of the activity of a diverse range of immunocompetent cells. Essential roles have been implicated in cardioprotection, in both innate and adaptive immune responses in mucosal organs, and in the maintenance of adipose tissue cells. Over the past 10 years, several studies evaluated the usability of IL-33 as a biomarker in diseases of inflammatory and noninflammatory origin. Our group is currently evaluating the predictive role of serum IL-33 in acute kidney injury (AKI). The aim of the article is to discuss selected studies on IL-33 in different diseases and its potential role as a biomarker molecule.

Downloads

Download data is not yet available.

References

Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Bi-omarkers in acute kidney injury—pathophysiological basis and clinical per-formance. Acta Physiologica (Oxford, England). 2016. DOI: https://doi.org/10.1111/apha.12764

Huo W, Zhang K, Nie Z, Li Q, Jin F. Kidney injury molecule-1 (KIM-1): a nov-el kidney-specific injury molecule playing potential double-edged functions in kidney injury. Transplant Rev (Orlando). 2010;24(3):143-146. https://doi.org/10.1016/j.trre.2010.02.002 PMID:20447817 DOI: https://doi.org/10.1016/j.trre.2010.02.002

Shang W, Wang Z. The update of NGAL in acute kidney injury. Curr Protein Pept Sci. 2017;18(12):1211-1217. https://doi.org/10.2174/1389203717666160909125004 PMID:27634444 DOI: https://doi.org/10.2174/1389203717666160909125004

Fan W, Ankawi G, Zhang J, et al. Current understanding and future direc-tions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567-576. https://doi.org/10.1515/cclm-2018-0776 PMID:30179848 DOI: https://doi.org/10.1515/cclm-2018-0776

Nalesso F, Cattarin L, Gobbi L, Fragasso A, Garzotto F, Calò LA. Evaluating Nephrocheck® as a predictive tool for acute kidney injury. Int J Nephrol Renovasc Dis. 2020;13:85-96. https://doi.org/10.2147/IJNRD.S198222 PMID:32425580 DOI: https://doi.org/10.2147/IJNRD.S198222

Hoffmann JC, Patschan D, Dihazi H, et al. Cytokine profiling in anti neutro-phil cytoplasmic antibody-associated vasculitis: a cross-sectional cohort study. Rheumatol Int. 2019;39(11):1907-1917. https://doi.org/10.1007/s00296-019-04364-y PMID:31286195 DOI: https://doi.org/10.1007/s00296-019-04364-y

Fields JK, Günther S, Sundberg EJ. Structural basis of IL-1 family cytokine signaling. Front Immunol. 2019;10:1412. https://doi.org/10.3389/fimmu.2019.01412 PMID:31281320 DOI: https://doi.org/10.3389/fimmu.2019.01412

Baekkevold ES, Roussigné M, Yamanaka T, et al. Molecular characteriza-tion of NF-HEV, a nuclear factor preferentially expressed in human high en-dothelial venules. Am J Pathol. 2003;163(1):69-79. https://doi.org/10.1016/S0002-9440(10)63631-0 PMID:12819012 DOI: https://doi.org/10.1016/S0002-9440(10)63631-0

Pichery M, Mirey E, Mercier P, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and in-flamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012;188(7):3488-95. DOI: https://doi.org/10.4049/jimmunol.1101977

Roussel L, Erard M, Cayrol C, Girard JP. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pock-et. EMBO Rep. 2008;9(10):1006-1012. https://doi.org/10.1038/embor.2008.145 PMID:18688256 DOI: https://doi.org/10.1038/embor.2008.145

Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 axis in organ fi-brosis. Front Immunol. 2018;9:2432. https://doi.org/10.3389/fimmu.2018.02432 PMID:30405626 DOI: https://doi.org/10.3389/fimmu.2018.02432

Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154-168. https://doi.org/10.1111/imr.12619 PMID:29247993 DOI: https://doi.org/10.1111/imr.12619

Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017;278(1):173-184. https://doi.org/10.1111/imr.12552 PMID:28658560 DOI: https://doi.org/10.1111/imr.12552

de Oliveira MFA, Talvani A, Rocha-Vieira E. IL-33 in obesity: where do we go from here? Inflamm Res. 2019;68(3):185-194. https://doi.org/10.1007/s00011-019-01214-2 PMID:30656387 DOI: https://doi.org/10.1007/s00011-019-01214-2

Krychtiuk KA, Stojkovic S, Lenz M, et al. Predictive value of low interleukin-33 in critically ill patients. Cytokine. 2018;103:109-113. https://doi.org/10.1016/j.cyto.2017.09.017PMID:28974430 DOI: https://doi.org/10.1016/j.cyto.2017.09.017

Ketelaar ME, Nawijn MC, Shaw DE, Koppelman GH, Sayers I. The chal-lenge of measuring IL-33 in serum using commercial ELISA: lessons from asthma. Clin Exp Allergy. 2016;46(6):884-887. https://doi.org/10.1111/cea.12718 PMID:26850082 DOI: https://doi.org/10.1111/cea.12718

Asaka D, Yoshikawa M, Nakayama T, Yoshimura T, Moriyama H, Otori N. Elevated levels of interleukin-33 in the nasal secretions of patients with al-lergic rhinitis. Int Arch Allergy Immunol. 2012;158(s1)(suppl 1):47-50. https://doi.org/10.1159/000337764 PMID:22627366 DOI: https://doi.org/10.1159/000337764

Rivière E, Ly B, Boudaoud S, et al. Pitfalls for detecting interleukin-33 by ELISA in the serum of patients with primary Sjögren syndrome: comparison of different kits. Ann Rheum Dis. 2016;75(3):633-635. https://doi.org/10.1136/annrheumdis-2015-208557 PMID:26659716 DOI: https://doi.org/10.1136/annrheumdis-2015-208557

Wei J, Zhao J, Schrott V, et al. Red blood cells store and release interleukin-33. J Investig Med. 2015;63(6):806-810. https://doi.org/10.1097/JIM.0000000000000213 PMID:26107423 DOI: https://doi.org/10.1097/JIM.0000000000000213

Behairy OG, Elsadek AE, Behiry EG, Elhenawy IA, Shalan NH, Sayied KR. Clinical value of serum interleukin-33 biomarker in infants with neonatal cholestasis. J Pediatr Gastroenterol Nutr. 2020;70(3):344-349. https://doi.org/10.1097/MPG.0000000000002565 PMID:31764415 DOI: https://doi.org/10.1097/MPG.0000000000002565

Gungor O, Unal HU, Guclu A, et al. IL-33 and ST2 levels in chronic kidney disease: associations with inflammation, vascular abnormalities, cardiovas-cular events, and survival. PLoS One. 2017;12(6):e0178939. https://doi.org/10.1371/journal.pone.0178939 PMID:28614418 DOI: https://doi.org/10.1371/journal.pone.0178939

Bao YS, Na SP, Zhang P, et al. Characterization of interleukin-33 and solu-ble ST2 in serum and their association with disease severity in patients with chronic kidney disease. J Clin Immunol. 2012;32(3):587-594. https://doi.org/10.1007/s10875-011-9622-7 PMID:22203232 DOI: https://doi.org/10.1007/s10875-011-9622-7

Seidlmayer LK, Kuhn J, Berbner A, et al. Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum-mitochondrial crosstalk influences adeno-sine triphosphate production via mitochondrial Ca2+ uptake through the mi-tochondrial ryanodine receptor in cardiac myocytes. Cardiovasc Res. 2016;112(1):491-501. https://doi.org/10.1093/cvr/cvw185 PMID:27496868 DOI: https://doi.org/10.1093/cvr/cvw185

Mu R, Huang HQ, Li YH, Li C, Ye H, Li ZG. Elevated serum interleukin 33 is associated with autoantibody production in patients with rheumatoid arthri-tis. J Rheumatol. 2010;37(10):2006-2013. https://doi.org/10.3899/jrheum.100184 PMID:20682660 DOI: https://doi.org/10.3899/jrheum.100184

Hong YS, Moon SJ, Joo YB, et al. Measurement of interleukin-33 (IL-33) and IL-33 receptors (sST2 and ST2L) in patients with rheumatoid arthritis. J Ko-rean Med Sci. 2011;26(9):1132-1139. https://doi.org/10.3346/jkms.2011.26.9.1132 PMID:21935266 DOI: https://doi.org/10.3346/jkms.2011.26.9.1132

Borsky P, Fiala Z, Andrys C, et al. Alarmins HMGB1, IL-33, S100A7, and S100A12 in psoriasis vulgaris. Mediators Inflamm. 2020;2020:8465083. https://doi.org/10.1155/2020/8465083 PMID:32377165 DOI: https://doi.org/10.1155/2020/8465083

Minaga K, Watanabe T, Hara A, et al. Identification of serum IFN-α and IL-33 as novel biomarkers for type 1 autoimmune pancreatitis and IgG4-related disease. Sci Rep. 2020;10(1):14879. https://doi.org/10.1038/s41598-020-71848-4 PMID:32938972 DOI: https://doi.org/10.1038/s41598-020-71848-4

Bakr RM, Sayed DS, Abd-Elkader AS, Kamel AA, Badran AY. Does interleu-kin-33 level correlate with the activity of pemphigus vulgaris?: A case-control study. Dermatol Ther. 2021;34(1):e14605. https://doi.org/10.1111/dth.14605 PMID:33249704 DOI: https://doi.org/10.1111/dth.14605

Chatrabnous N, Jafarzadeh A, Ghaderi A, et al. Association of elevated in-terleukin-33 serum levels with tumor stages in patients with prostate can-cer. Eur Cytokine Netw. 2019;30(4):144-150. PMID:32096476

Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y. Serum interleukin-33 levels in pa-tients with gastric cancer. Dig Dis Sci. 2011;56(12):3596-3601. https://doi.org/10.1007/s10620-011-1760-5PMID:21643739 DOI: https://doi.org/10.1007/s10620-011-1760-5

Zeng X, Zhang Z, Gao QQ, et al. Clinical significance of serum interleukin-31 and interleukin-33 levels in patients of endometrial cancer: a case control study. Dis Markers. 2016;2016:9262919. https://doi.org/10.1155/2016/9262919 PMID:27340318 DOI: https://doi.org/10.1155/2016/9262919

Hu LA, Fu Y, Zhang DN, Zhang J. Serum IL-33 as a diagnostic and prognos-tic marker in non-small cell lung cancer. Asian Pac J Cancer Prev. 2013;14(4):2563-2566. https://doi.org/10.7314/APJCP.2013.14.4.2563 PMID:23725175 DOI: https://doi.org/10.7314/APJCP.2013.14.4.2563

Yang ZP, Ling DY, Xie YH, et al. The association of serum IL-33 and sST2 with breast cancer. Dis Markers. 2015;2015:516895. https://doi.org/10.1155/2015/516895 PMID:26456994 DOI: https://doi.org/10.1155/2015/516895

Çekmez F, Fidanci MK, Ayar G, et al. Diagnostic value of Upar, IL-33, and ST2 levels in childhood sepsis. Clin Lab. 2016;62(5):751-755. https://doi.org/10.7754/Clin.Lab.2014.141013PMID:27348998 DOI: https://doi.org/10.7754/Clin.Lab.2014.141013

Halil H, Tayman C, Buyuktiryaki M, Okur N, Cakır U, Serkant U. Serum inter-leukin-33 as a biomarker in predicting neonatal sepsis in premature in-fants. Comb Chem High Throughput Screen. 2018;21(7):510-515. https://doi.org/10.2174/1386207321666180911090656PMID:30207217 DOI: https://doi.org/10.2174/1386207321666180911090656

Bahrami Mahneh S, Movahedi M, Aryan Z, et al; Universal Scientific Educa-tion and Research Network (USERN). Serum IL-33 is elevated in children with asthma and is associated with disease severity. Int Arch Allergy Immu-nol. 2015;168(3):193-196. https://doi.org/10.1159/000442413 PMID:26797312 DOI: https://doi.org/10.1159/000442413

Halát G, Haider T, Dedeyan M, Heinz T, Hajdu S, Negrin LL. IL-33 and its increased serum levels as an alarmin for imminent pulmonary complications in polytraumatized patients. World J Emerg Surg. 2019;14(1):36. https://doi.org/10.1186/s13017-019-0256-z PMID:31360218 DOI: https://doi.org/10.1186/s13017-019-0256-z

Sundnes O, Ottestad W, Schjalm C, et al. Rapid systemic surge of IL-33 after severe human trauma: a prospective observational study. Mol Med. 2021;27(1):29. https://doi.org/10.1186/s10020-021-00288-1 PMID:33771098 DOI: https://doi.org/10.1186/s10020-021-00288-1

Kozłowska E, Brzezińska-Błaszczyk E, Agier J, Wysokiński A, Żelechowska P. Alarmins (IL-33, sST2, HMGB1, and S100B) as potential biomarkers for schizophrenia. J Psychiatr Res. 2021;138:380-387. https://doi.org/10.1016/j.jpsychires.2021.04.019 PMID:33957300 DOI: https://doi.org/10.1016/j.jpsychires.2021.04.019

Yuan W, Mei X, Zhang YY, et al. High expression of interleukin-33/ST2 pre-dicts the progression and poor prognosis in chronic hepatitis B patients with hepatic flare. Am J Med Sci. 2020;360(6):656-661. https://doi.org/10.1016/j.amjms.2020.06.023 PMID:32988596 DOI: https://doi.org/10.1016/j.amjms.2020.06.023

Venkataraman A, Kumar NP, Hanna LE, et al. Plasma biomarker profiling of PIMS-TS, COVID-19 and SARS-CoV2 seropositive children—a cross-sectional observational study from southern India. EBioMedicine. 2021;66:103317. https://doi.org/10.1016/j.ebiom.2021.103317PMID:33813138 DOI: https://doi.org/10.1016/j.ebiom.2021.103317

Duan L, Huang Y, Su Q, et al. Potential of IL-33 for preventing the kidney in-jury via regulating the lipid metabolism in gout patients. J Diabetes Res. 2016;2016:1028401. https://doi.org/10.1155/2016/1028401 PMID:27579324 DOI: https://doi.org/10.1155/2016/1028401

Jiao M, Li X, Chen L, et al. Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J Neuroinflammation. 2020;17(1):251. https://doi.org/10.1186/s12974-020-01932-z PMID:32859229 DOI: https://doi.org/10.1186/s12974-020-01932-z

Liu X, Hu R, Pei L, et al. Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol. 2020;328:113233. https://doi.org/10.1016/j.expneurol.2020.113233 PMID:32044328 DOI: https://doi.org/10.1016/j.expneurol.2020.113233

Chen Z, Hu Q, Huo Y, Zhang R, Fu Q, Qin X. Serum interleukin-33 is a novel predictive biomarker of hemorrhage transformation and outcome in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2021;30(2):105506. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105506PMID:33307292 DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105506

Chen Z, Zhang R, Wu Y, Fu Q, Qin X. Serum interleukin-33 is a predictor of depression in patients with acute ischemic stroke. Curr Neurovasc Res. 2020;17(5):719-724. https://doi.org/10.2174/1567202617999210101223635 PMID:33397261 DOI: https://doi.org/10.2174/1567202617999210101223635

Li XM, Wang XY, Feng XW, et al. Serum interleukin-33 as a novel marker for long-term prognosis and recurrence in acute ischemic stroke patients. Brain Behav. 2019;9(9):e01369. https://doi.org/10.1002/brb3.1369 PMID:31397082 DOI: https://doi.org/10.1002/brb3.1369

Miao Y, Zhang ZX, Feng X, Sun WM. IL-33 as a novel serum prognostic marker of intracerebral hemorrhage. Oxid Med Cell Longev. 2021;2021:5597790. https://doi.org/10.1155/2021/5597790 PMID:33854693 DOI: https://doi.org/10.1155/2021/5597790

Segiet OA, Romuk E, Nowalany-Kozielska E, Wojciechowska C, Piecuch A, Wojnicz R. The concentration of interleukin-33 in heart failure with reduced ejection fraction. Anatol J Cardiol. 2019;21(6):305-313. https://doi.org/10.14744/AnatolJCardiol.2019.64614 PMID:31142723 DOI: https://doi.org/10.14744/AnatolJCardiol.2019.64614

Koca SS, Kara M, Deniz F, et al. Serum IL-33 level and IL-33 gene polymor-phisms in Behçet’s disease. Rheumatol Int. 2015;35(3):471-477. https://doi.org/10.1007/s00296-014-3111-2PMID:25119832 DOI: https://doi.org/10.1007/s00296-014-3111-2

Ginaldi L, De Martinis M, Saitta S, et al. Interleukin-33 serum levels in post-menopausal women with osteoporosis. Sci Rep. 2019;9(1):3786. https://doi.org/10.1038/s41598-019-40212-6PMID:30846811 DOI: https://doi.org/10.1038/s41598-019-40212-6

Lin CY, Pfluger CM, Henderson RD, McCombe PA. Reduced levels of inter-leukin 33 and increased levels of soluble ST2 in subjects with amyotrophic lateral sclerosis. J Neuroimmunol. 2012;249(1-2):93-95. https://doi.org/10.1016/j.jneuroim.2012.05.001 PMID:22633272 DOI: https://doi.org/10.1016/j.jneuroim.2012.05.001

Hasan A, Al-Ghimlas F, Warsame S, et al. IL-33 is negatively associated with the BMI and confers a protective lipid/metabolic profile in non-diabetic but not diabetic subjects. BMC Immunol. 2014;15(1):19. https://doi.org/10.1186/1471-2172-15-19 PMID:24886535 DOI: https://doi.org/10.1186/1471-2172-15-19

Firouzabadi N, Dashti M, Dehshahri A, Bahramali E. Biomarkers of IL-33 and sST2 and lack of association with carvedilol therapy in heart fail-ure. Clin Pharmacol. 2020;12:53-58. https://doi.org/10.2147/CPAA.S256290 PMID:32607003 DOI: https://doi.org/10.2147/CPAA.S256290

Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9(4):e95055. https://doi.org/10.1371/journal.pone.0095055 PMID:24751794 DOI: https://doi.org/10.1371/journal.pone.0095055

Dhillon OS, Narayan HK, Quinn PA, Squire IB, Davies JE, Ng LL. Interleukin 33 and ST2 in non-ST-elevation myocardial infarction: comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP. Am Heart J. 2011;161(6):1163-1170. https://doi.org/10.1016/j.ahj.2011.03.025 PMID:21641364 DOI: https://doi.org/10.1016/j.ahj.2011.03.025

Published

2021-11-30

How to Cite

Erfurt, S., Hoffmeister, M., Oess, S., Asmus, K., Ritter, O., Patschan, S., & Patschan, D. (2021). Serum IL-33 as a biomarker in different diseases: useful parameter or much need for clarification?. Journal of Circulating Biomarkers, 10(1), 20–25. https://doi.org/10.33393/jcb.2021.2327
Received 2021-08-03
Accepted 2021-11-10
Published 2021-11-30

Metrics

Most read articles by the same author(s)