Skip to main content

Advertisement

Log in

High Stromal TGFBI in Lung Cancer and Intratumoral CD8-Positive T Cells were Associated with Poor Prognosis and Therapeutic Resistance to Immune Checkpoint Inhibitors

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

We investigated whether the expression of transforming growth factor-beta-induced protein (TGFBI) and intratumoral immune cells including CD8- and Forkhead box protein P3 (Foxp3)-positive T cells in clinical lung cancer patients could predict the therapeutic response to nivolumab.

Methods

Thirty-three patients who were treated with nivolumab were enrolled in this study. Immunohistochemical analyses of TGFBI, PD-L1, CD8, Foxp3, and vimentin expression were conducted. Serum concentrations of TGFBI and transforming growth factor-beta1 (TGF-β1) were determined by enzyme-linked immunosorbent assay (ELISA).

Results

Cancer TGFBI was not associated with prognosis and therapeutic response to nivolumab, but cancer stromal TGFBI and intratumoral CD8-positive T cells were associated with them. Therefore, we evaluated cancer stromal TGFBI and intratumoral CD8-positive T cells. The high-TGFBI-expression group had poorer clinical responses than did the low-TGFBI-expression group (p < 0.0001). The number of times nivolumab was administered in the high-CD8-expression group was significantly higher than that in the low-CD8-expression group (p = 0.0046). The high-CD8-expression group had better clinical responses than did the low-CD8-expression group (p = 0.0013). Interestingly, all patients in the high-TGFBI/low-CD8-expression group had progressive disease (PD). In contrast, all patients in the low-TGFBI/high-CD8-expression group had PR + SD (partial response + stable disease) by the Response Evaluation Criteria in Solid Tumors (RECIST 1.1).

Conclusions

The dual evaluation of stromal TGFBI and intratumoral CD8-positive T cells could be a useful predictive marker for nivolumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Youlden DR, Cramb SM, Baade PD. The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol. 2008;3(8):819–31.

    PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Google Scholar 

  3. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006;27(4):195–201.

    CAS  PubMed  Google Scholar 

  4. Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203(4):883–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tseng SY, Otsuji M, Gorski K, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193(7):839–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    CAS  PubMed  Google Scholar 

  7. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99(19):12293–7.

    CAS  PubMed  Google Scholar 

  8. Tsushima F, Yao S, Shin T, et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood. 2007;110(1):180–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    CAS  PubMed  Google Scholar 

  12. Dempke WCM, Fenchel K, Dale SP. Programmed cell death ligand-1 (PD-L1) as a biomarker for non-small cell lung cancer (NSCLC) treatment-are we barking up the wrong tree? Transl Lung Cancer Res. 2018;7(Suppl 3):275–9.

    Google Scholar 

  13. Lim SH, Hong M, Ahn S, et al. Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur J Cancer. 2016;52:1–9.

    CAS  PubMed  Google Scholar 

  14. McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016;2(1):46–54.

    PubMed  PubMed Central  Google Scholar 

  15. Peters S, Creelan B, Hellmann MD, et al. Abstract CT082: impact of tumor mutation burden on the efficacy of first-line nivolumab in stage iv or recurrent non-small cell lung cancer: an exploratory analysis of CheckMate 026. Cancer Res. 2017;77(Supplement 13):CT082.

  16. Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin J, Lu K, Lin J, et al. Genetic variants in TGF-β pathway are associated with ovarian cancer risk. PLoS ONE. 2011;6(9):e25559.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Scollen S, Luccarini C, Baynes C, et al. TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 2011;20(6):1112–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang F, Yu L, Zhong Y, Yao L. TGFB1 509 C/T polymorphism and colorectal cancer risk: a meta-analysis. Med Oncol. 2010;27(4):1324–8.

    CAS  PubMed  Google Scholar 

  20. Bhayal AC, Prabhakar B, Rao KP, et al. Role of transforming growth factor-β1 -509 C/T promoter polymorphism in gastric cancer in south Indian population. Tumour Biol. 2011;32(5):1049–53.

    CAS  PubMed  Google Scholar 

  21. Lin M, Stewart DJ, Spitz MR, et al. Genetic variations in the transforming growth factor-beta pathway as predictors of survival in advanced non-small cell lung cancer. Carcinogenesis. 2011;32(7):1050–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Javle M, Li Y, Tan D, Dong X, Chang P, Kar S, et al. Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS ONE. 2014;9(1):e85942.

    PubMed  PubMed Central  Google Scholar 

  23. Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal modulators of TGF-β in cancer. J Clin Med. 2017;6(1):E7.

    PubMed  Google Scholar 

  24. Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF. cDNA cloning and sequence analysis of βig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol. 1992;11(7):511–22.

    CAS  PubMed  Google Scholar 

  25. Turtoi A, Musmeci D, Wang Y, et al. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res. 2011;10(9):4302–13.

    CAS  PubMed  Google Scholar 

  26. Turtoi A, Blomme A, Debois D, et al. Organized proteomic heterogeneity in colorectal cancer liver metastases and implications for therapies. Hepatology. 2014;59(3):924–34.

    CAS  PubMed  Google Scholar 

  27. Kawamoto T, Noshiro M, Shen M, et al. Structural and phylogenetic analyses of RGD-CAP/βig-h3, a fasciclin-like adhesion protein expressed in chick chondrocytes. Biochim Biophys Acta. 1998;1395(3):288–92.

    CAS  PubMed  Google Scholar 

  28. Yokobori T, Nishiyama M. TGF-β signaling in gastrointestinal cancers: progress in basic and clinical research. J Clin Med. 2017;6(1):E11.

    PubMed  Google Scholar 

  29. Liu Y, Xue M, Du S, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10(1):1637.

    PubMed  PubMed Central  Google Scholar 

  30. Wang J, Chen Y, Xiang F, et al. Suppression of TGF-β1 enhances chemosensitivity of cisplatin-resistant lung cancer cells through the inhibition of drug-resistant proteins. Artif Cells Nanomed Biotechnol. 2018;46(7):1505–12.

    CAS  PubMed  Google Scholar 

  31. Kaira K, Higuchi T, Naruse I, et al. Metabolic activity by 18F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC. Eur J Nucl Med Mol Imaging. 2018;45(1):56–66.

    CAS  PubMed  Google Scholar 

  32. Shimoda Y, Ubukata Y, Handa T, et al. High expression of forkhead box protein C2 is associated with aggressive phenotypes and poor prognosis in clinical hepatocellular carcinoma. BMC Cancer. 2018;18(1):597.

    PubMed  PubMed Central  Google Scholar 

  33. Fong YC, Hsu SF, Wu CL, et al. Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung Cancer. 2009;64(1):13–21.

    PubMed  Google Scholar 

  34. Sasaki H, Kobayashi Y, Nakashima Y, et al. Beta IGH3, a TGF-beta inducible gene, is overexpressed in lung cancer. Jpn J Clin Oncol. 2002;32(3):85–9.

    PubMed  Google Scholar 

  35. O’Leary K, Shia A, Cavicchioli F, et al. Identification of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer. 2015;113(6):970–8.

    PubMed  PubMed Central  Google Scholar 

  36. Wu X, Ruan L, Yang Y, Mei Q. Analysis of gene expression changes associated with human carcinoma-associated fibroblasts in non-small cell lung carcinoma. Biol Res. 2017;50(1):6.

    PubMed  PubMed Central  Google Scholar 

  37. Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS. Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, betaig-h3. J Biol Chem. 2000;275(40):30907–15.

    CAS  PubMed  Google Scholar 

  38. Bhagirath D, Abrol N, Khan R, Sharma M, Seth A, Sharma A. Expression of CD147, BIGH3 and Stathmin and their potential role as diagnostic marker in patients with urothelial carcinoma of the bladder. Clin Chim Acta. 2012;413(19–20):1641–6.

    CAS  PubMed  Google Scholar 

  39. Han B, Cai H, Chen Y, Hu B, Luo H, Wu Y, et al. The role of TGFBI (βig-H3) in gastrointestinal tract tumorigenesis. Mol Cancer. 2015;14:64.

    PubMed  PubMed Central  Google Scholar 

  40. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol. 2011;28(3):682–8.

    CAS  PubMed  Google Scholar 

  41. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004;10(15):5094–100.

    CAS  PubMed  Google Scholar 

  42. El-Guindy DM, Helal DS, Sabry NM, Abo El-Nasr M. Programmed cell death ligand-1 (PD-L1) expression combined with CD8 tumor infiltrating lymphocytes density in non-small cell lung cancer patients. J Egypt Natl Canc Inst. 2018;30(4):125–31.

    PubMed  Google Scholar 

  43. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.

    PubMed  PubMed Central  Google Scholar 

  45. Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol. 2017;28:xii18–32.

    CAS  PubMed  Google Scholar 

  46. Wang L, Saci A, Szabo PM, et al. EMT-and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun. 2018;9(1):3503.

    PubMed  PubMed Central  Google Scholar 

  47. Zhang L, Chen Y, Li F, Bao L, Liu W. Atezolizumab and bevacizumab attenuate cisplatin resistant ovarian cancer cells progression synergistically via suppressing epithelial-mesenchymal transition. Front Immunol. 2019;10:867.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chae YK, Chang S, Ko T, et al. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep. 2018;8(1):2918.

    PubMed  PubMed Central  Google Scholar 

  49. Sato H, Niimi A, Yasuhara T, et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017;8(1):1751.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank Ms. Yukie Saito, Ms. Sayaka Okada, Ms. Kayoko Takahashi, Ms. Mizue Murata, Ms. Harumi Kanai, Ms. Fumie Takada, Ms. Sawa Nagayama, and Ms. Mariko Nakamura for their excellent assistance. This work was supported by the research grant from Ono Pharmaceutical Co., Ltd. and Bristol-Myers Squibb K.K and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), grant numbers 17K19893, 18K07665, and 18H02877. The work also was supported in part by a Research Grant of the Princess Takamatsu Cancer Research Fund, the Suzuken Memorial Foundation, and the Pancreas Research Foundation of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobuhiro Nakazawa MD, Takehiko Yokobori MD, PhD or Kyoichi Kaira MD, PhD.

Ethics declarations

Disclosures

Kyoichi Kaira has received research grants and a speaker honorarium from ONO PHARMACEUTICAL CO., LTD. and Bristol-Myers Squibb K.K.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakazawa, N., Yokobori, T., Kaira, K. et al. High Stromal TGFBI in Lung Cancer and Intratumoral CD8-Positive T Cells were Associated with Poor Prognosis and Therapeutic Resistance to Immune Checkpoint Inhibitors. Ann Surg Oncol 27, 933–942 (2020). https://doi.org/10.1245/s10434-019-07878-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-019-07878-8

Navigation