skip to main content
research-article

Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

Published:08 November 2023Publication History
Skip Abstract Section

Abstract

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

REFERENCES

  1. [1] Zhao Wayne Xin, Zhang Wenhui, He Yulan, Xie Xing, and Wen Ji-Rong. 2018. Automatically learning topics and difficulty levels of problems in online judge systems. ACM Trans. Inf. Syst. 36, 3, Article 27 (Mar. 2018), 33 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Ashwin T. S., Prakash Vijay, and Rajendran Ramkumar. 2023. A systematic review of intelligent tutoring systems based on Gross body movement detected using computer vision. Comput. Educ.: Artif. Intell. 4 (2023), 100125. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Liu Qi, Wu Runze, Chen Enhong, Xu Guandong, Su Yu, Chen Zhigang, and Hu Guoping. 2018. Fuzzy cognitive diagnosis for modelling examinee performance. ACM Trans. Intell. Syst. Technol. 9, 4, Article 48 (Jan. 2018), 26 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Gao Lina, Zhao Zhongying, Li Chao, Zhao Jianli, and Zeng Qingtian. 2022. Deep cognitive diagnosis model for predicting students’ performance. Fut. Gener. Comput. Syst. 126 (2022), 252262. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Piech Chris, Bassen Jonathan, Huang Jonathan, Ganguli Surya, Sahami Mehran, Guibas Leonidas J., and Sohl-Dickstein Jascha. 2015. Deep knowledge tracing. In Advances in Neural Information Processing Systems, Cortes C., Lawrence N., Lee D., Sugiyama M., and Garnett R. (Eds.), Vol. 28. Curran Associates, Inc.Google ScholarGoogle Scholar
  6. [6] Liu Qi, Huang Zhenya, Yin Yu, Chen Enhong, Xiong Hui, Su Yu, and Hu Guoping. 2021. EKT: Exercise-aware knowledge tracing for student performance prediction. IEEE Trans. Knowl. Data Eng. 33, 1 (2021), 100115. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Huang Zhenya, Liu Qi, Chen Yuying, Wu Le, Xiao Keli, Chen Enhong, Ma Haiping, and Hu Guoping. 2020. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students. ACM Trans. Inf. Syst. 38, 2, Article 19 (Feb. 2020), 33 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Liu Qi, Shen Shuanghong, Huang Zhenya, Chen Enhong, and Zheng Yonghe. 2021. A survey of knowledge tracing. arXiv:2105.15106. Retrieved from https://arxiv.org/abs/2105.15106Google ScholarGoogle Scholar
  9. [9] Sun Jianwen, Zou Rui, Liang Ruxia, Gao Lu, Liu Sannyuya, Li Qing, Zhang Kai, and Jiang Lulu. 2022. Ensemble knowledge tracing: Modeling interactions in learning process. Expert Syst. Appl. 207 (2022), 117680. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Liu Sannyuya, Yu Jianwei, Li Qing, Liang Ruxia, Zhang Yunhan, Shen Xiaoxuan, and Sun Jianwen. 2022. Ability boosted knowledge tracing. Inf. Sci. 596 (2022), 567587. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Liu Qi, Tong Shiwei, Liu Chuanren, Zhao Hongke, Chen Enhong, Ma Haiping, and Wang Shijin. 2019. Exploiting cognitive structure for adaptive learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery; Data Mining (KDD’19). Association for Computing Machinery, New York, NY, 627635. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Qian Tie-Yun, Liu Bei, Hong Liang, and You Zhen-Ni. 2018. Time and location aware points of interest recommendation in location-based social networks. J. Comput. Sci. Technol. 33 (2018), 12191230.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Gayoso-Cabada Joaquín, Jorge María Goicoechea-de, Gómez-Albarrán Mercedes, Sanz-Cabrerizo Amelia, Sarasa-Cabezuelo Antonio, and Sierra José-Luis. 2019. Ontology-enhanced educational annotation activities. Sustainability 11, 16 (2019). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Sekeroglu Boran, Dimililer Kamil, and Tuncal Kubra. 2019. Student performance prediction and classification using machine learning algorithms. In Proceedings of the 8th International Conference on Educational and Information Technology (ICEIT’19). Association for Computing Machinery, New York, NY, 711. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Xu Zhuojia, Yuan Hua, and Liu Qishan. 2021. Student performance prediction based on blended learning. IEEE Trans. Educ. 64, 1 (2021), 6673. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Grubišić Ani, Žitko Branko, Gašpar Angelina, Vasić Daniel, and Dodaj Arta. 2022. Evaluation of split-and-rephrase output of the knowledge extraction tool in the intelligent tutoring system. Expert Syst. Appl. 187 (2022), 115900. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Qi Tianlong, Ren Meirui, Guo Longjiang, Li Xiaokun, Li Jin, and Zhang Lichen. 2023. ICD: A new interpretable cognitive diagnosis model for intelligent tutor systems. Expert Syst. Appl. 215 (2023), 119309. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Yamada Takuji and Bork Peer. 2009. Evolution of biomolecular networks–lessons from metabolic and protein interactions. Nat. Rev. Molec. Cell Biol. 10, 11 (2009), 791803.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Leskovec Jure, Lang Kevin J., Dasgupta Anirban, and Mahoney Michael W.. 2008. Statistical properties of community structure in large social and information networks. In Proceedings of the 17th International Conference on World Wide Web (WWW’08). Association for Computing Machinery, New York, NY, 695704. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Ji Shaoxiong, Pan Shirui, Cambria Erik, Marttinen Pekka, and Yu Philip S.. 2022. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 2 (2022), 494514. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Yang Tianchi, Hu Linmei, Shi Chuan, Ji Houye, Li Xiaoli, and Nie Liqiang. 2021. HGAT: Heterogeneous graph attention networks for semi-supervised short text classification. ACM Trans. Inf. Syst. 39, 3, Article 32 (May 2021), 29 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Goyal Palash and Ferrara Emilio. 2018. Graph embedding techniques, applications, and performance: A survey. Knowl.-Bas. Syst. 151 (2018), 7894. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Wang Xiao, Ji Houye, Shi Chuan, Wang Bai, Ye Yanfang, Cui Peng, and Yu Philip S.. 2019. Heterogeneous graph attention network. In Proceedings of the World Wide Web Conference (WWW’19). Association for Computing Machinery, New York, NY, 20222032. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Pareja Aldo, Domeniconi Giacomo, Chen Jie, Ma Tengfei, Suzumura Toyotaro, Kanezashi Hiroki, Kaler Tim, Schardl Tao, and Leiserson Charles. 2020. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. Proceedings of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 53635370. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Jin Ming, Li Yuan-Fang, and Pan Shirui. 2022. Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs. In Advances in Neural Information Processing Systems, Oh Alice H., Agarwal Alekh, Belgrave Danielle, and Cho Kyunghyun (Eds.).Google ScholarGoogle Scholar
  26. [26] Tenenbaum Joshua B., Kemp Charles, Griffiths Thomas L., and Goodman Noah D.. 2011. How to grow a mind: Statistics, structure, and abstraction. Science 331, 6022 (2011), 12791285.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Roediger Henry L. and Butler Andrew C.. 2011. The critical role of retrieval practice in long-term retention. Trends Cogn. Sci. 15, 1 (2011), 2027.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Karpicke Jeffrey D. and III Henry L. Roediger. 2008. The critical importance of retrieval for learning. Science 319, 5865 (2008), 966968.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Yeung Chun-Kit and Yeung Dit-Yan. 2018. Addressing two problems in deep knowledge tracing via prediction-consistent regularization. In Proceedings of the fth Annual ACM Conference on Learning at Scale (L@S’18). Association for Computing Machinery, New York, NY, Article 5, 10 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Ahmed Amr, Shervashidze Nino, Narayanamurthy Shravan, Josifovski Vanja, and Smola Alexander J.. 2013. Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web (WWW’13). Association for Computing Machinery, New York, NY, 3748. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Ou Mingdong, Cui Peng, Pei Jian, Zhang Ziwei, and Zhu Wenwu. 2016. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). Association for Computing Machinery, New York, NY, 11051114. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Perozzi Bryan, Al-Rfou Rami, and Skiena Steven. 2014. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14). Association for Computing Machinery, New York, NY, 701710. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Grover Aditya and Leskovec Jure. 2016. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). Association for Computing Machinery, New York, NY, 855864. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Kipf Thomas N. and Welling Max. 2016. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907. Retrieved from https://arxiv.org/abs/1609.02907Google ScholarGoogle Scholar
  35. [35] Velickovic Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana, Lio Pietro, Bengio Yoshua, et al. 2017. Graph attention networks. Stat 1050, 20 (2017), 1048550.Google ScholarGoogle Scholar
  36. [36] Hamilton Will, Ying Zhitao, and Leskovec Jure. 2017. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems, Guyon I., Luxburg U. Von, Bengio S., Wallach H., Fergus R., Vishwanathan S., and Garnett R. (Eds.), Vol. 30. Curran Associates, Inc.Google ScholarGoogle Scholar
  37. [37] Wang Xiao, Bo Deyu, Shi Chuan, Fan Shaohua, Ye Yanfang, and Yu Philip S.. 2023. A survey on heterogeneous graph embedding: Methods, techniques, applications and sources. IEEE Trans. Big Data 9, 2 (2023), 415436. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Dong Yuxiao, Chawla Nitesh V., and Swami Ananthram. 2017. Metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17). Association for Computing Machinery, New York, NY, 135144. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Shi Chuan, Hu Binbin, Zhao Wayne Xin, and Yu Philip S.. 2019. Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31, 2 (2019), 357370. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Chen Hongxu, Yin Hongzhi, Wang Weiqing, Wang Hao, Nguyen Quoc Viet Hung, and Li Xue. 2018. PME: Projected metric embedding on heterogeneous networks for link prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery; Data Mining (KDD’18). Association for Computing Machinery, New York, NY, 11771186. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Lu Yuanfu, Shi Chuan, Hu Linmei, and Liu Zhiyuan. 2019. Relation structure-aware heterogeneous information network embedding. Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 44564463. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Jin Jiarui, Du Kounianhua, Zhang Weinan, Qin Jiarui, Fang Yuchen, Yu Yong, Zhang Zheng, and Smola Alexander J.. 2022. GraphHINGE: Learning interaction models of structured neighborhood on heterogeneous information network. ACM Trans. Inf. Syst. 40, 3, Article 45 (Mar. 2022), 35 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Chairatanakul Nuttapong, Liu Xin, and Murata Tsuyoshi. 2021. PGRA: Projected graph relation-feature attention network for heterogeneous information network embedding. Inf. Sci. 570 (2021), 769794. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Zhu Linhong, Guo Dong, Yin Junming, Steeg Greg Ver, and Galstyan Aram. 2016. Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Trans. Knowl. Data Eng. 28, 10 (2016), 27652777. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Li Jundong, Dani Harsh, Hu Xia, Tang Jiliang, Chang Yi, and Liu Huan. 2017. Attributed network embedding for learning in a dynamic environment. In Proceedings of the ACM on Conference on Information and Knowledge Management (CIKM’17). Association for Computing Machinery, New York, NY, 387396. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. [46] Yu Wenchao, Cheng Wei, Aggarwal Charu C., Chen Haifeng, and Wang Wei. 2017. Link prediction with spatial and temporal consistency in dynamic networks. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17). 33433349.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Mitrovic Sandra and Weerdt Jochen De. 2019. Dyn2Vec: Exploiting dynamic behaviour using difference networks-based node embeddings for classification. In Proceedings of the International Conference on Data Science. CSREA Press, 194200.Google ScholarGoogle Scholar
  48. [48] Singer Uriel, Guy Ido, and Radinsky Kira. 2019. Node embedding over temporal graphs. arXiv:1903.08889. Retrieved from https://arxiv.org/abs/1903.08889Google ScholarGoogle Scholar
  49. [49] Zhou Yujing, Liu Weile, Pei Yang, Wang Lei, Zha Daren, and Fu Tianshu. 2019. Dynamic network embedding by semantic evolution. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’19). 18. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Gao Chao, Zhu Junyou, Zhang Fan, Wang Zhen, and Li Xuelong. 2022. A novel representation learning for dynamic graphs based on graph convolutional networks. IEEE Trans. Cybernet. (2022), 114. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Xie Yuanzhen, Ou Zijing, Chen Liang, Liu Yang, Xu Kun, Yang Carl, and Zheng Zibin. 2021. Learning and updating node embedding on dynamic heterogeneous information network. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM’21). Association for Computing Machinery, New York, NY, 184192. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Fan Yujie, Ju Mingxuan, Zhang Chuxu, and Ye Yanfang. 2022. Heterogeneous temporal graph neural network. Proceedings of the SIAM International Conference on Data Mining (SDM’22), 657665.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg S., and Dean Jeff. 2013. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, Burges C. J., Bottou L., Welling M., Ghahramani Z., and Weinberger K. Q. (Eds.), Vol. 26. Curran Associates, Inc.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Feng Mingyu, Heffernan Neil, and Koedinger Kenneth. 2009. Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-adapt. Interact. 19, 3 (2009), 243266.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. [55] Choi Youngduck, Lee Youngnam, Shin Dongmin, Cho Junghyun, Park Seoyon, Lee Seewoo, Baek Jineon, Bae Chan, Kim Byungsoo, and Heo Jaewe. 2020. Ednet: A large-scale hierarchical dataset in education. In Proceedings of the 21st International Conference on Artificial Intelligence in Education (AIED’20). Springer, 6973.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Chang Haw-Shiuan, Hsu Hwai-Jung, and Chen Kuan-Ta. 2015. Modeling exercise relationships in E-Learning: A unified approach. In Proceedings of the International Conference on Educational Data Mining (EDM’15). 532535.Google ScholarGoogle Scholar
  57. [57] Velickovic Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana, Lio Pietro, Bengio Yoshua, et al. 2017. Graph attention networks. Stat 1050, 20 (2017), 1048550.Google ScholarGoogle Scholar
  58. [58] Huang Zexi, Silva Arlei, and Singh Ambuj. 2021. A broader picture of random-walk based graph embedding. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’21). Association for Computing Machinery, New York, NY, 685695. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Bordes Antoine, Usunier Nicolas, Garcia-Duran Alberto, Weston Jason, and Yakhnenko Oksana. 2013. Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems, Burges C. J., Bottou L., Welling M., Ghahramani Z., and Weinberger K. Q. (Eds.), Vol. 26. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdfGoogle ScholarGoogle Scholar
  60. [60] Yang Bishan, Yih Wen-tau, He Xiaodong, Gao Jianfeng, and Deng Li. 2014. Embedding entities and relations for learning and inference in knowledge bases. arXiv:1412.6575. Retrieved from https://arxiv.org/bs/1412.6575Google ScholarGoogle Scholar
  61. [61] Li Ren, Cao Yanan, Zhu Qiannan, Bi Guanqun, Fang Fang, Liu Yi, and Li Qian. 2022. How does knowledge graph embedding extrapolate to unseen data: A semantic evidence view. In Proceedings of the AAAI Conference on Artificial Intelligence, 57815791. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Sankar Aravind, Wu Yanhong, Gou Liang, Zhang Wei, and Yang Hao. 2018. Dynamic graph representation learning via self-attention networks. arXiv:1812.09430. Retrieved from https://arxiv.org/abs/1812.09430Google ScholarGoogle Scholar
  63. [63] Rossi Emanuele, Chamberlain Ben, Frasca Fabrizio, Eynard Davide, Monti Federico, and Bronstein Michael. 2020. Temporal graph networks for deep learning on dynamic graphs. arXiv:2006.10637. Retrieved from https://arxiv.org/abs/2006.10637Google ScholarGoogle Scholar

Index Terms

  1. Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Information Systems
            ACM Transactions on Information Systems  Volume 42, Issue 2
            March 2024
            897 pages
            ISSN:1046-8188
            EISSN:1558-2868
            DOI:10.1145/3618075
            Issue’s Table of Contents

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 8 November 2023
            • Online AM: 29 August 2023
            • Accepted: 11 August 2023
            • Revised: 10 July 2023
            • Received: 25 November 2022
            Published in tois Volume 42, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)367
            • Downloads (Last 6 weeks)46

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Full Text

          View this article in Full Text.

          View Full Text