Skip to main content
Log in

Petrology, age, and polychronous sources of the initial magmatism of the Imandra-Varzuga paleorift, Fennoscandian shield

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper reports new geochemical and isotope data on the volcanogenic complexes of the Arvarench sequence of the Imandra-Varzuga paleorift structure of the Fennoscandian shield. It was established that these complexes are made up of komatiites, basalts, high-Mg andesites, and dacites and occupy a Sumian chronostratigraphic position with U-Pb (SHRIMP) age of 2429 ± 6.6 Ma in the regional Early Precambrian stratigraphic scale of the Kola-Norwegian province of the Fennoscandian shield, thus constraining the Sumian Subhorizon of the Lower Karelian Complex of the Northeastern Fennoscandian shield within 2450–2430 Ma. The high negative εNd, LREE enrichment, and the presence of different-age Archean zircons with REE patterns indicative of disequilibrium crystallization suggest that the parental dacitic melts were derived by anatectic melting of polychronous (3.2, 2.9, 2.8, 2.7 Ga) lithological complexes of the Archean continental crust of the Kola-Norwegian province of the Fennoscandian shield. Numerical petrological-geochemical modeling of generation and evolution of primary melts of the metavolcanic rocks made it possible to establish that the isotope-geochemical peculiarities of the komatiites, basalts, and basaltic andesites can be best described by fractional crystallization of primary komatiite melt contaminated by ∼ 2% of the Archean crustal material of tonalitic composition. The mantle protolith of primary melt in terms of its isotope-geochemical parameters was similar to the “enriched” mantle source of the Paleoproterozoic (2430–2450 Ma) mafic-ultramafic layered intrusions of the Kola-Norwegian province and Sumian metavolcanic rocks of the Fennoscandian shield. The high-Mg andesites of the Arvarench sequence were derived by fractionation of crustally contaminated (∼ 2%) magnesian basalts with elevated Al content (Al2O3 ∼ 15.6 wt %) in equilibrium with 40–50% Cpx 40-Ol 20-Opx 10-Pl 10-Mag 20 assemblage at P < 1 GPa. Obtained isotope-geochemical data and modeling results could be interpreted by off-subduction geodynamic model of the evolution of mantle plume and its interaction with the Archean continental lithosphere at the early stage of intracratonic rifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelin, Y., Heaman, L.M., and Semenov, V.S., U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implication for the Timing and Duration of Paleoproterozoic Continental Rifting, Precambrian Res., 1995, vol. 75, pp. 31–46.

    Article  CAS  Google Scholar 

  • Anderson, A.T., Davis, A.M., and Lu, F., Evolution of the Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts, J. Petrol., 2000, vol. 41, pp. 449–473.

    Article  CAS  Google Scholar 

  • Annen, C., Blundy, J.D., and Sparks, R.S.J., The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones, J. Petrol., 2006, vol. 47, no. 3, pp. 505–539.

    Article  CAS  Google Scholar 

  • Aplonov, S.V., Geodinamika (Geodynamics), St. Petersburg: SPbGU, 2001.

    Google Scholar 

  • Arestova, N.A., Lobach-Zhuchenko, S.B., and Chekulaev, V.P., Early Precambrian Mafic Rocks of the Fennoscandian Shield As a Reflection of Plume Magmatism: Geochemical Types and Formation Stages, Russian J. Earth Sci., 2003, vol. 5, no. 3, pp. 145–163.

    Article  Google Scholar 

  • Balashov, Yu.A., Paleoproterozoic Geochronology of the Imandra-Varzuga Structure, Kola Peninsula, Petrologiya, 1996, vol. 1, no. 1, pp. 3–25 [Petrology (Engl. Transl.), vol. 1, no. 1, pp. 1–22].

    MathSciNet  Google Scholar 

  • Bayanova, T., Ludden, J., and Mitrofanov, F., Timing and Duration of Paleoproterozoic Events Producing Ore-Bearing Layered Intrusions of the Baltic Shield: Metallogenic, Petrological and Geodynamic Implications, Geol. Soc. London, Spec. Publ., 2009, vol. 323, pp. 165–198.

    Article  CAS  Google Scholar 

  • Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatism), St. Petersburg: Nauka, 2004.

    Google Scholar 

  • Bayanova, T.B., Pozhilenko, V.I., Smol’kin, V.F., et al., Katalog geokhronologicheskikh dannykh po severo-vostochnoi chasti Baltiiskogo shchita (Catalogue of Geochronologic Data on Northeastern Baltic Shield), Apatity: KolNTs RAN, 2002.

    Google Scholar 

  • Belousova, E.A., Griffin, W.L., and O’Reilly, S.Y., Zircon Crystal Morphology, Trace Element Signatures, and Hf Isotope Composition As a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids, J. Petrol., 2006, vol. 47, no. 2, pp. 329–353.

    Article  CAS  Google Scholar 

  • Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., Igneous Zircon: Trace Element Composition As An Indicator of Source Rock Type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.

    Article  ADS  CAS  Google Scholar 

  • Berthelsen, A. and Marker, M., 1.9–1.8 Ga Old Strikeslipe Megashears in the Baltic Shield and Their Plate Tectonic Implications, D.A. Gulison and St. Mueller., Eds., in The European Geotraverse, Tectonophysics, vol. 128, pp. 163–181.

  • Black, L.P., Kamo, S.L., Allen, C.M., et al., TEMORA 1: a New Zircon Standard for U-Pb Geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  CAS  Google Scholar 

  • Bourdon, E., Eissem, J.-P., Gutscher, M.-A., et al., Slab Melting and Slab Melt Metasomatism in the Northern Andean Volcanic Zone: Adakites and High-Mg Andesites from Pichincha Volcano (Ecuador), Bull. Soc. Géol. France, 2002, vol. 173, no. 3, pp. 195–206.

    Article  CAS  Google Scholar 

  • Calmusa, T., Aguillon-Robles, A., Maury, R.C., et al., Spatial and Temporal Evolution of Basalts and Magnesian Andesites (“Bajaites”) from Baja California, Mexico: the Role of Slab Melts, Lithos, 2003, vol. 66, pp. 77–105.

    Article  ADS  Google Scholar 

  • Canil, D., Vanadium in Peridotites, Mantle Redox and Tectonic Environments: Archean to Present, Earth Planet. Sci. Lett., 2002, vol. 195, pp. 75–90.

    Article  ADS  CAS  Google Scholar 

  • Castillo, P.R., Janney, P.E., and Solidum, R.U., Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights the Source of Adakites and Other Lavas in a Complex Arcs Setting, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 33–51.

    Article  ADS  CAS  Google Scholar 

  • Chashchin, V.V., Bayanova, T.B., and Levkovich, N.V., Volcanoplutonic Association of the Early-Stage Evolution of the Imandra-Varzuga Rift Zone, Kola Peninsula, Russia: Geological, Petrogeochemical, and Isotope-Geochronological Data, Petrologiya, 2008, vol. 16, no. 3, pp. 296–316 [Petrology (Engl. Transl.), vol. 16, no. 3, pp. 279–298].

    Google Scholar 

  • Condie, K.C., High Field Strength Element Ratios in Archean Basalts: a Window To Evolving Sources of Mantle Plumes?, Lithos, 2005, vol. 79, pp. 491–504.

    Article  ADS  CAS  Google Scholar 

  • DePaolo, D.J., Trace-Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallisation, Earth Planet. Sci. Lett., 1981, vol. 53, pp. 189–202.

    Article  ADS  CAS  Google Scholar 

  • Derek, C.V., Jouni, I.V., Tuomo, T.A., and Richard, S.J., Tectonic, Stratigraphic, and Geochemical Comparisons between ca. 2500–2440 Ma Mafic Igneous Events in the Canadian and Fennoscandian Shields, Precambrian Res, 1998, vol. 92, pp. 89–116.

    Article  Google Scholar 

  • Fedotov, Zh.A., On Felsic Volcanism Completing the First, Strelna Stage of the Evolution of the Imandra-Varzugskoi Zone, in Basseiny sedimentatsii i zony vulkanizma dokembriya Kol’skogo regiona (Sedimentation Basins and Zones of Volcanism in the Precambrian of the Baltic Shield), Predovsky, A.A. and Bolotov, V.I., Eds., Apatity: Akad. Nauk SSSR, 1983, pp. 99–107.

    Google Scholar 

  • Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis during Geochronological Studies, Geokhimiya, 2008, no. 9, pp. 980–997 [Geochem. Int. (Engl. Transl.), no. 9, pp. 912–927].

  • Goldstein, S.J. and Jacobsen, S.B., Nd and Sr Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  ADS  CAS  Google Scholar 

  • Green, N.L. and Harry, D.L., On the Relationships Between Subducted Slabage and Arc Basalt Petrogenesis, Cascadia Subduction System, North America, Earth Planet. Sci. Lett., 1999, vol. 171, pp. 367–381.

    Article  ADS  CAS  Google Scholar 

  • Hanski, E., Walker, R.J., Huhma, H., and Suominen, I., The Os and Nd Isotopic Systematics of C. 2.44 Ga Akanvaara and Koitelainen Mafic Layered Intrusions in Northern Finland, Precambrian Res., 2001, vol. 109, pp. 73–102.

    Article  CAS  Google Scholar 

  • Heaman, L.M., Global Mafic Magmatism at 2.45 Ga: Remnants of An Ancient Large Igneous Province?, Geology, 1997, vol. 25, pp. 299–302.

    Article  ADS  CAS  Google Scholar 

  • Hoskin, P.W.O. and Schaltegger, U., Zircon, Rev. Mineral. Geochem, 2003, vol. 53, pp. 27–62.

    Article  CAS  Google Scholar 

  • Imandra-Varzugskaya zona karelid (The Imandra-Varzuga Zone of the Karelides), Gorbunov, G.I., Ed., Leningrad: Nauka, 1982, p. 280.

    Google Scholar 

  • Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd Evolution of Chondrites and Achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  ADS  CAS  Google Scholar 

  • Jahn, B.M., Wu F., and Chen, B., Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in Phanerozoic, Episodes, 2000, vol. 23, pp. 82–92.

    Google Scholar 

  • Kadik, A.A., Lukanin, O.A., and Lapin, I.V., Fizikokhimicheskie usloviya evolyutsii bazal’tovykh magm v pripoverkhnostnykh ochagakh (Physicochemical Conditions of the Evolution of Basaltic Magmas in Subsurface Chambers), Moscow: Nauka, 1990.

    Google Scholar 

  • Keto, L.S. and Jacobsen, S.B., Nd and Sr Isotopic Variations of Early Paleozoic Oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.

    Article  ADS  CAS  Google Scholar 

  • Latyshev, L.N., On Geology of Mt. Arvarench Area and Shchuch’e Bay, in Stratigraficheskie podrazdeleniya dokembriya Kol’skogo poluostrova ikh korrelyatsiya (Precambrian Stratigraphic Units of the Kola Peninsula and their Correlation), Apatity: KolNTs RAN, 1978, pp. 88–100.

    Google Scholar 

  • Lauri, L.S., Ramo, O.T., Huhma, H., Manttari, I., and Rasanen, J., Petrogenesis of Silicic Magmatism Related to the ∼2.44 Ga Rifting of Archean Crust in Koillismaa, Eastern Finland, Lithos, 2006, vol. 86, pp. 137–166.

    Article  ADS  CAS  Google Scholar 

  • Le Bas, M.J., IUGS Reclassification of the High-Mg and Picritic Volcanic Ricks, J. Petrol., 2000, vol. 41, pp. 1467–1470.

    Google Scholar 

  • Lobach-Zhuchenko, S.B., Chekulaev, V.P., Arestova, N.A., et al., Archean Terranes in Karelia: Geological and Isotopic-Geochemical Evidence, Geotektonika, 2000, no. 6, pp. 26–42 [Geotectonics (Engl. Transl.), no. 6, pp. 452–466].

  • Ludwig, K.R., A User’s Manual for Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel, Berkeley Geochronol. Center. Sp. Publ., 2000, no. 2.

  • Martin, H., Adakitic Magmas: Modern Analogues of Archaean Granitoids, Lithos, 1999, vol. 46, pp. 411–429.

    Article  ADS  CAS  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The Composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  CAS  Google Scholar 

  • McKenzie, D. and O’Nions, R.K., Partial Melt Distributions from Inversion of Rare Earth Element Concentrations, J. Petrol., 1991, vol. 32, pp. 1021–1091.

    CAS  Google Scholar 

  • Melezhik, V.A. and Sturt, B.A., General Geology and Evolutionary History of Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’ Ponoy Greenstone Belt in the Northeastern Baltic Shield, Earth Sci. Rev., 1994, vol. 36, pp. 205–241.

    Article  ADS  CAS  Google Scholar 

  • Melezhik, V.A., Huhma, H., Condon, D.J., et al. Temporal Constraints on the Paleoproterozoic Lomagundi-Jatuli Carbon Isotopic Event, Geology, 2007, vol. 35, pp. 655–658.

    Article  ADS  CAS  Google Scholar 

  • Mints, M.V., Glaznev, V.N., Konilov, A.N., et al., Rannii dokembrii Severo-Vostoka Baltiiskogo shchita: paleogeodinamika, stroenie i evolyutsiya kontinental’noi kory (Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of the Continental Crust), Moscow: Nauchnyi Mir, 1996.

    Google Scholar 

  • Negrutsa, T.F., Granitsa arkheya i proterozoya na Baltiiskom shchite (Archean-Proterozoic Boundary at the Baltic Shield), Apatity: KolNTs RAN, 1988.

    Google Scholar 

  • Negrutsa, V.Z. and Negrutsa, T.F., Obstanovki sidementogeneza i stratotipy dorifeya (Settings of Sedimentogenesis and Pre-Riphean Stratotypes), St. Petersburg: Nauka, 2006.

    Google Scholar 

  • Polat, A. and Kerrich, R., Magnesian Andesite, Nb Enriched Basalt-Andesites, and Adakites from Late-Archean 2.7 Ga Wawa Greenstone Belts, Superior Province, Canada: Implications of Late Archean Subduction Zone Petrogenetic Processes, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 36–52.

    Article  ADS  CAS  Google Scholar 

  • Pozhilenko, V.I., Bayanova, T.B., Bogachev, V.A., et al., Relations and Age of the Arvarench and Kuksha Formations (Mt. Arvarench, Kola Region, Baltic Shield), in Obshchie voprosy raschleneniya dokembriya (General Problems of the Precambrian Subdivision), Apatity: KolNTs RAN, 2000, pp. 215–218.

    Google Scholar 

  • Prinzhoefer, A. and Allerge, C.J., Residual Peridotites and the Mechanism of Partial Melting, Earth Planet. Sci. Lett., 1985, vol. 74, nos. 2–3, pp. 251–265.

    Article  ADS  Google Scholar 

  • Puchtel, I.S. and Humayun, M., Platinum Group Element Fractionation in a Komatiitic Basalt Lava Lake, Geochim. Cosmochim. Acta, 2001, vol. 65, no. 17, pp. 2979–2993.

    Article  ADS  CAS  Google Scholar 

  • Puchtel, I.S., Haase, K.M., Hofmann, A.W., et al., Petrology and Geochemistry of Crustally Contaminated Komatiitic Basalts from the Vetreny Belt, Southeastern Baltic Shield: Evidence for An Early Proterozoic Mantle Plume Beneath Rifted Archean Continental Lithosphere, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1205–1222.

    Article  ADS  CAS  Google Scholar 

  • Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A., Ed., St. Petersburg: Nauka, 2005.

    Google Scholar 

  • Rudnick, R.L. and Gao, S., Composition of the Continental Crust, H.D. Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry (Elsevier, 2003), vol. 3, pp. 1–61.

  • Semikhatov, M.A., Recent Precambrian General Scales: Comparison, Stratigrafiya. Geol. Korrelyatsiya, 1993, vol. 1, no. 1, pp. 6–20.

    MathSciNet  Google Scholar 

  • Sharkov, E.V., Formirovanie rassloennykh intruzivov i svyazannogo s nimi orudeneniya (Formation of the Layered Intrusions and Related Mineralization), Moscow: Nauchnyi Mir, 2006.

  • Shchipanskii, A.A., Subduktsionnye i mantiino-plyumovye protsessy v geodinamike formirovaniya Arkheiskikh zelenokamennykh poyasov (Subduction and Mantle-Plume Processes in the Geodynamics of the Archean Greenstone Belts), Moscow: LKI, 2008.

  • Smolkin, V.F., The Paleoprotrozoic (2.5–1.7 Ga) Midcontinent Rift System of the Northeastern Fennoscandian Shield, Can. J. Earth Sci, 1997, vol. 34, no. 4, pp. 426–443.

    Article  ADS  CAS  Google Scholar 

  • Svetov, S.A., Golubev, A.I., and Svetova, A.I., Geochemistry of Sumian Basaltic Andesites of Central Karelia, Geokhimiya, 2004, vol. 42, no. 7, pp. 630–640 [Geochem. Int. (Engl. Transl.), vol. 42, no. 7, pp. 630–640].

    Google Scholar 

  • Svetov, S.A., Svetova, A.I., and Nazarova, T.N., Do the Sumian High-Magnesian Basaltic Andesites Belong to the Bajaite Series?, Geol. Polezn. Iskop. Karelii, 2009, no. 12, pp. 112–124.

  • Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  • Thorkelson, D.J. and Breitsprecher, K., Partial Melting of Slab Window Margins: Genesis of Adakitic and Non-Adakitic Magmas, Lithos, 2005, vol. 79, pp. 25–41.

    Article  ADS  CAS  Google Scholar 

  • Vrevskii, A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Petrology of Komatiites from the Baltic Shield and Isotope Geochemical Evolution of Their Mantle Sources, Petrologiya, 2003, vol. 11, no. 6, pp. 587–617 [Petrology (Engl. Transl.), vol. 11, no. 6, pp. 532–561].

    Google Scholar 

  • Vrevsky, A.B., Lobach-Zhuchenko, S.B., Chekulaev, V.P., et al., Geological, Petrologic, Isotopic, and Geochemical Constraints of Geodynamic Models Simulating Formation of the Archean Tonalite-Trondhjemite-Granodiorite Associations in Ancient Cratons, Geotektonika, 2010, vol. 44, no. 4, pp. 20–38 [Geotectonics (Engl. Transl.), vol. 44, no. 4, pp. 305–321].

    Google Scholar 

  • Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization Thermometers for Zircon and Rutile, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 413–433.

    Article  ADS  CAS  Google Scholar 

  • White, W.M., Geochemistry, 1997 http:/www.geo.cornell.edu/geology/classes/chapters.htm.

  • Williams, I.S., U-Th-Pb Geochronology by Ion Microprobe, Eds. McKibben M.A., Shanks W.C. and Ridley W.I., Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

  • Wood, B.J. and Turner, S.P., Origin of Primitive High-Mg Andesites: Constraints from Natural Examples and Experiments, Earth Planet. Sci. Lett., 2009, vol. 283, nos. 1–4, pp. 59–66.

    Article  ADS  CAS  Google Scholar 

  • Zagorodnyi, V.G. and Radchenko, A.T., Tektonika karelid severo-vostochnoi chasti Baltiiskogo shchita (Tectonics of the Karelides of the Northeastern Baltic Shield), Leningrad: Nauka, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Vrevsky.

Additional information

Original Russian Text © A.B. Vrevsky, 2011, published in Petrologiya, 2011, Vol. 19, No. 5, pp. 546–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrevsky, A.B. Petrology, age, and polychronous sources of the initial magmatism of the Imandra-Varzuga paleorift, Fennoscandian shield. Petrology 19, 521–547 (2011). https://doi.org/10.1134/S0869591111050067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591111050067

Keywords

Navigation