Skip to main content
Log in

Effect of EuF3 on Thermal and Luminescent Properties of Glasses in the 30BaZrF670NaPO3–хEuF3 System

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

30BaZrF6–70NaPO3 glasses doped with 0.1–1.0 wt % EuF3 have been synthesized. The introduction of up to 1.0 wt % EuF3 has no noticeable effect on glass formation and thermal and crystallization stability of the glasses. Heat treatment of glasses can lead to the formation of glass ceramics. Crystallization during the heat treatment of glasses occurs in two stages with the appearance of Na3ZrF7, NaZr(PO4)3, and BaFPO3 crystalline phases in the glass phase. The presence of europium trifluoride in the glass is responsible for its luminescence, which increases without reaching saturation with increasing EuF3 content from 0.1 to 1.0 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. K. Kumar and C. K. Jayasankar, J. Mol. Struct. 1074, 496 (2014). https://doi.org/10.1016/j.molstruc.2014.06.022

    Article  CAS  Google Scholar 

  2. R. T. Wegh, H. R. Donke, K. D. Oskam, et al., Science (Washington, D.C.) 283, 663 (1999). https://doi.org/10.1126/science.283.5402.663

    Article  CAS  Google Scholar 

  3. I. G. Maslennikova, V. K. Goncharuk, V. Ya. Kavun, et al., Russ. J. Gen. Chem. 89, 2480 (2019). https://doi.org/10.1134/S1070363219120247

    Article  CAS  Google Scholar 

  4. E. A. Porai-Koshits, J. Non. Cryst. Solids 123, 13 (1990). https://doi.org/10.1016/0022-3093(90)90767-G

    Article  Google Scholar 

  5. A. A. Lebedev, Polymorphism and Glass Tempering (Tr. GOI, 1921, vol. 2) [in Russian].

    Google Scholar 

  6. W. H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932). https://doi.org/10.1021/ja01349a006

    Article  CAS  Google Scholar 

  7. L. N. Ignatieva, Yu. V. Marchenko, V. A. Mashchenko, et al., J. Non-Cryst. Solids 548, 120329 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120329

    Article  CAS  Google Scholar 

  8. V. K. Goncharuk, I. G. Maslennikova, V. I. Kharchenko, et al., J. Non-Cryst. Solids 431, 118 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.05.011

    Article  CAS  Google Scholar 

  9. P. P. Fedorov, A. A. Luginina, and A. I. Popov, J. Fluorine Chem. 172, 22 (2015). https://doi.org/10.1016/j.jfluchem.2015.01.009

    Article  CAS  Google Scholar 

  10. M. N. Brekhovskikh, S. Kh., Batygov, L. V. Moiseeva, et al., Khim. Tekhnol. 19, 678 (2018).

    Google Scholar 

  11. V. K. Goncharuk, V. Ya. Kavun, A. B. Slobodyuk, et al., J. Non-Cryst. Solids 480, 61 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.018

    Article  CAS  Google Scholar 

  12. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  CAS  Google Scholar 

  13. Y. Rault, J. Z. Adam, F. Smektala, and J. Lucas, J. Fluorine Chem. 110, 173 (2001). https://doi.org/10.1016/S0022-1139(01)00425-0

    Article  Google Scholar 

  14. B. Wang, D. S. Li, L. F. Shen, et al., Opt. Mater. Express 9, 1749 (2019). https://doi.org/10.1364/OME.9.001749

    Article  CAS  Google Scholar 

  15. L. N. Ignatieva, Yu. V. Marchenko, V. A. Mashchenko, et al., J. Non-Cryst. Solids 572, 121105 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121105

    Article  CAS  Google Scholar 

  16. E. B. Merkulov, V. K. Goncharuk, and S. A. Stepanov, J. Non-Cryst. Solids 170, 65 (1994). https://doi.org/10.1016/0022-3093(94)90104-X

    Article  CAS  Google Scholar 

  17. M. Saad and M. Poulain, Mater. Sci. Forum 1920, 11 (1987). www.scientific.net/MSF.19-20.11.

  18. V. Sudarsan, R. Mishra, and S. K. Kulshreshtha, J. Non-Cryst. Solids 342, 160 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.014

    Article  CAS  Google Scholar 

  19. A. Osaka, K. Takahashi, and M. Ikeda, J. Mater. Sci. Lett. 3, 36 (1984).

    Article  CAS  Google Scholar 

  20. L. N. Ignatieva, N. V. Surovtsev, E. B. Merkulov, et al., J. Non-Cryst. Solids 358, 3248 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.09.002

    Article  CAS  Google Scholar 

  21. L. N. Ignatieva, N. N. Savchenko, Yu. V. Marchenko, et al., J. Non-Cryst. Solids 450, 103 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.08.004

    Article  CAS  Google Scholar 

  22. Y. Dwivedi, Anita. Rai, and S. B. Rai, J. Lumin. 129, 629 (2009). https://doi.org/10.1016/j.jlumin.2009.01.007

    Article  CAS  Google Scholar 

  23. D. Chen, Y. Wang, Y. Yu, et al., J. Phys. Chem. 112, 18943 (2008). https://doi.org/10.1021/jp808061x

    Article  CAS  Google Scholar 

  24. V. F. Zolin and L. G. Koreneva, Rare Earth Probe in Chemistry and Biology (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Gerasimenko for help with calculations of unit cell parameters by the TOPAS program.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-03-00092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Ignatieva.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatieva, L.N., Marchenko, Y.V., Mashchenko, V.A. et al. Effect of EuF3 on Thermal and Luminescent Properties of Glasses in the 30BaZrF670NaPO3–хEuF3 System. Russ. J. Inorg. Chem. 67, 1639–1645 (2022). https://doi.org/10.1134/S0036023622100461

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622100461

Keywords:

Navigation