Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-30T23:30:54.062Z Has data issue: false hasContentIssue false

Tropical Rainforest Dynamics and Palaeoclimate Implications since the late Pleistocene, Nilgiris, India

Published online by Cambridge University Press:  15 November 2018

Priyanka Raja
Affiliation:
Department of Geology, Anna University, Chennai, India
Hema Achyuthan*
Affiliation:
Department of Geology, Anna University, Chennai, India
Anjum Farooqui
Affiliation:
Birbal Sahni Institute of Palaeosciences, Lucknow, India
Rengaswamy Ramesh
Affiliation:
School of Earth and Planetary Sciences, National Institute of Science Education and Research, Odisha, India
Pankaj Kumar
Affiliation:
Inter-University Accelerator Centre, New Delhi, India
Sundeep Chopra
Affiliation:
Inter-University Accelerator Centre, New Delhi, India
*
*Corresponding author at: Department of Geology, Anna University, Sardar Patel Road, Chennai, Tamil Nadu 600025, India. E-mail address: hachyuthan@yahoo.com;hachyuthan0@gmail.com (H. Achyuthan).

Abstract

A multiproxy study involving sedimentology, palynology, radiocarbon dating, stable isotopes, and geochemistry was carried out on the Parsons Valley Lake deposit, Nilgiris, India, to determine palaeoclimatic fluctuations and their possible impact on vegetation since the late Pleistocene. The 72-cm-deep sediment core that was retrieved reveals five distinct palaeoclimatic phases: (1) Warm and humid conditions with a high lake stand before the last glacial maximum (LGM; ~29,800 cal yr BP), subsequently changing to a relatively cool and dry phase during the LGM. (2) Considerable dry conditions and lower precipitation occurred between ~16,300 and 9500 cal yr BP. During this period, the vegetation shrank and perhaps was confined to moister pockets or was a riparian forest cover. (3) An outbreak in the shift of monsoonal precipitation was witnessed in the beginning of the mid-Holocene, around 8400 cal yr BP, implying alteration in the shift toward warm and humid conditions, resulting in relatively high pollen abundance for evergreen taxa. (4) This phase exhibits a shift to heavier δ13C values around ~1850 cal yr BP, with an emergence of moist deciduous plants pointing to drier conditions. (5) Human activities contributed to the exceedingly high percentage of Acacia and Pinus pollen during the Little Ice Age.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, K., Dupuy, J.M., Gei, M.G., Hulsho, C., Medvigy, D., Pizano, C., Salgado-Negret, B., et al., 2017. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters 12, 023001.Google Scholar
Andreev, A.A., Siegert, C., Klimanov, V.A., Derevyagin, A.Y., Shilova, G.N., Melles, M., 2002. Late Pleistocene and Holocene Vegetation and Climate on the Taymyr Lowland, Northern Siberia. Quaternary Research 57, 138150.Google Scholar
Angeler, D.G., Allen, C.R., 2016. Quantifying resilience. Journal of Applied Ecology 53, 617624.Google Scholar
Ansari, M.H., Vink, A., 2007. Vegetation history and palaeoclimate of the past 30 kyr in Pakistan as inferred from the palynology of continental margin sediments off the Indus Delta. Review of Palaeobotany and Palynology 145, 201216.Google Scholar
Barboni, D., Bonnefille, R., 2001. Precipitation signal in modern pollen rain from tropical forests of southwest India. Review of Palaeobotany and Palynology 114, 239258.Google Scholar
Bard, E., Rostek, F., Turon, J.L., Gendreau, S., 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 13211324.Google Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B.A.S., Gajewski, K., Guiot, J., et al., 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics 37(3–4), 775802.Google Scholar
Bates, J.D., Svejcar, T., Miller, R.F., Angell, R.A., 2006. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments 64, 670697.Google Scholar
Berger, A.L., 1978. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9, 139167.Google Scholar
Beuning, K.R.M., Zimmerman, K.A., Ivory, S.J., Cohen, A.S., 2011. Vegetation response to glacial–interglacial climate variability near Lake Malawi in the southern African tropics. Palaeogeography, Palaeoclimatology, Palaeoecology 303, 8192.Google Scholar
Blasco, F., 1971. Montagnes du Sud de l’Inde: forêts, savanes, écologie. Travaux de la Section scientifique et technique, Institut français de Pondichéry 10, 436.Google Scholar
Böll, A., Schulz, H., Munz, P., Rixen, T., Gaye, B., Emeis, K.C., 2015. Contrasting sea surface temperature of summer and winter monsoon variability in the northern Arabian Sea over the last 25 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 1021.Google Scholar
Bossuyt, F., Meegaskumbura, M., Beenaerts, M., Gowerdd, J., Pethiyagoda, R., Roelamts, K., Mamaert, A., et al., 2004. Local endemism within the Western Ghat–Sri Lanka biodiversity hotspot. Science 306, 479481.Google Scholar
Bradley, R.S., Wanner, H., Diaz, H.F., 2016). The medieval quiet period. The Holocene 26, 990993. doi: 101177/0959683615622552.Google Scholar
Bunyan, M., Bardhan, S., Jose, S., 2012. The shola (tropical montane forest)-grassland ecosystem mosaic of peninsular India: a review. American Journal of Plant Sciences 3, 16321639.Google Scholar
Caner, L., Bourgeon, G., 2001. Andisols of the Nilgiris highlands: new insight into their classification, age and genesis. In: Gunell, Y., Radhakrishnan, B.P. (Eds.), Sahyadri, the Great Escarpment of the Indian Subcontinent (Patterns of Landscape Development in the Western Ghats). Geological Society of India, No. 47, pp. 905918.Google Scholar
Caner, L., Lo Seen, D., Gunnell, Y., Ramesh, B.R., Bourgeon, G., 2007. Spatial heterogeneity of land cover response to climatic change in the Nilgiri highlands (southern India) since the last glacial maximum. Holocene 17, 195205.Google Scholar
Chabangborn, A., Brandefelt, J., Wohlfarth, B., 2013). Asian monsoon climate during the last glacial maximum: palaeo-data–model comparisons. Boreas 43, pp 220242. doi: 10.1111/bor.12032.Google Scholar
Champion, H.G., 1936. A preliminary survey of the forest types of India and Burma. Indian Forest Records 1(1), 1279.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.Google Scholar
Claussen, M., Dallmeyer, A., Bader, J., 2017. Theory and modeling of the African humid period and the green Sahara. Oxford Research Encyclopedia of Climate Science. doi: 10.1093/acrefore/9780190228620.013.532.Google Scholar
Cole, L., Bhagwat, S.A., Willis, K.J., 2015. Long-term disturbance dynamics and resilience of tropical peat swamp forests. Journal of Ecology 103(1), 1630.Google Scholar
Corlett, R.T., Primack, R.B., 2006. Tropical rainforests and the need for cross-continental comparisons. Trends in Ecology and Evolution 21, 104110.Google Scholar
Cosford, J., Qing, H., Lin, Y., Eglington, B., Mattey, D., Chen, Y. G., Zhang, M., Cheng, H., 2010. The East Asian monsoon during MIS 2 expressed in a speleothem δ18O record from Jintanwan Cave, Hunan, China. Quaternary Research 73, 541549.Google Scholar
Davidar, P., Rajagopal, B., Mohandass, D., Puyravaud, J.P., Condit, R., Wright, S.J., Leigh, E.G. Jr., 2007. The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Global Ecology and Biogeography 16, pp. 510518. doi: 10.1111/j.1466-8238.2007.00307.x.Google Scholar
Dean, W.E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
de Boer, E. J., Tjallingii, R., Vélez, M. I., Rijsdijk, K. F., Vlug, A., Reichart, G. J., Hooghiemstra, H., 2014. Climate variability in the SW Indian Ocean from an 8000-yr long multi-proxy record in the Mauritian lowlands shows a middle to late Holocene shift from negative IOD-state to ENSO-state. Quaternary Science Reviews 86, 175189.Google Scholar
Deplazes, G., Luckge, A., Peterson, L.C., Timmermann, A., Hamann, Y., Hughen, K.A., Rohl, U., et al., 2013. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 6, 213217.Google Scholar
Dixit, Y., Tandon, S.K., 2016. Hydroclimatic variability on the Indian subcontinent in the past millennium: review and assessment. Earth-Science Reviews 161, 115.Google Scholar
Dutt, S., Gupta, A.K., Clemens, S.C., Cheng, H., Singh, R.K., Kathayat, G, Edwards, R.L., 2015. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophysical Research Letters 42, 55265532.Google Scholar
Erdtrnan, G., 1943. An Introduction to Pollen Analysis. Chronica Botanica Company, Waltham, pp. 1239.Google Scholar
Farooqui, A., Pattan, A., Parthiban, J.N., SrivastavaJ., Ranjana J., Ranjana, 2014. Palynological record of tropical rainforest vegetation and sea level fluctuations since 140 Ka from sediment core, south-eastern Arabian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 411, 95109.Google Scholar
Farooqui, A., Ray, J.G., Farooqui, S.A., Tiwari, R.K., Khan, Z.A., 2010. Tropical rainforest vegetation, climate and sea level during the Pleistocene in Kerala, India. Quaternary International 213, 211.Google Scholar
Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J., Bonnefille, R., et al., 1999. Tropical climates at the last glacial maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry. Climate Dynamics 15, 823856.Google Scholar
Feeley, K.J., Wright, S.J., Supardi, M.N.N., Kassim, A.R., Davies, S.J., 2007. Decelerating growth in tropical forest trees. Ecology Letters 10, 461469.Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., et al., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.Google Scholar
Fleitmann, D., Burns, S.J., Neff, U., Mudelsee, M., Mangini, A., Kramers, J., Matter, A., 2004. Holocene records of rainfall variation and associated ITCZ migration from stalagmites from northern and southern Oman. In: Diaz, H.F., Bradley, R.S. (Eds.), The Hadley Circulation: Present, Past, and Future. Advances in Global Change Research Vol. 21. Springer, Dordrecht, pp. 259287.Google Scholar
Fleitmann, D., Burns, S. J., Pekala, M., Mangini, A., Al-Subbary, A., Al-Aowah, M., Kramers, J., Matter, A., 2011. Holocene and Pleistocene pluvial periods in Yemen, southern Arabia. Quaternary Science Reviews 30, 783787.Google Scholar
Gadgil, S., 2003. The Indian monsoon and its variability. Annual Reviews of Earth and Planetary Science 31, 429467.Google Scholar
Galy, V., François, L., France-Lanord, C., Faure, P., Kudrass, H., Palhol, F., Singh, S., 2008. C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews 27, 13961409.Google Scholar
Ghate, U., Joshi, N.V., Gadgil, M., 1998. On the patterns of tree diversity in the Western Ghats of India. Current Science 75, 594603.Google Scholar
Grimm, E.C., 2011. Tilia. Version 1.7.16 [computer software]. Illinois State Museum, Research and Collections Center, Springfield, Ill.Google Scholar
Gupta, A., Anderson, D.M., Overpeck, J.T., 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.Google Scholar
Hamdan, M.A., Brook, G.A., 2015. Timing and characteristics of Late Pleistocene and Holocene wetter periods in the Eastern Desert and Sinai of Egypt, based on 14C dating and stable isotope analysis of spring tufa deposits. Quaternary Science Reviews 130, 168188.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.Google Scholar
Holmes, J., Hoelzmann, P., 2017. The late Pleistocene–Holocene African humid period as evident in lakes. Oxford Research Encyclopedia of Climate Science. doi: 10.1093/acrefore/9780190228620.013.531.Google Scholar
Jacobson, G.L., Grimm, E.C., 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 67, 958966.Google Scholar
Jose, F.C., 2012. The “living fossil” shola plant community is under threat in upper Nilgiris. Current Science 102, 10911092.Google Scholar
Karunakaran, P.V., Rawat, G.S., Uniyal, V.K., 1998. Ecology and Conservation of the Grasslands of Eravikulam National Park, Western Ghats. Wildlife Institute of India, Dehra Dun, India.Google Scholar
Konecky, L., RussellJ, M. J, M., Johnson, T.C., Brown, E.T., Berke, M.A., Werne, J.P., Huang, Y., 2011. Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa Bronwen. Earth and Planetary Science Letters 312, 318326.Google Scholar
Koutavas, A., Lynch-Stieglitz, J., 2004. In: Diaz, H.F., Bradley, R.S. (Eds.), The Hadley Circulation: Present, Past, and Future. Advances in Global Change Research Vol. 21. Springer, Dordrecht, pp. 347369.Google Scholar
Kristen, I., Fuhrmann, A., Thorpe, J., Röhl, U., Wilkes, H., Oberhänsli, H., 2007. Hydrological changes in southern Africa over the last 200 Ka as recorded in lake sediments from the Tswaing impact crater. South African Journal of Geology 110(2–3), 311326.Google Scholar
Krumbein, W.C., Pettijohn, F.J., 1938. Manual of Sedimentary Petrography. Appleton Century-Crofts, New York, pp. 230233.Google Scholar
Kumar, P., Pattanaik, J.K., Ojha, S., Gargari, S., Joshi, R., Chopra, S., Kanjilal, D., 2015. A new AMS facility at Inter-University Accelerator Centre, New Delhi. Nuclear Instruments and Methods in Physics Research Section B 361, 115119.Google Scholar
Kumaran, K.P.N., Limaye, R.B., Nair, K.M., Padmalal, D., 2008. Palaeoecological and palaeoclimate potential of subsurface palynological data from the Late Quaternary sediments of South Kerala Sedimentary Basin, southwest India. Current Science 95, 515526.Google Scholar
Kutzbach, J.E., Guetter, P., 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. Journal of the Atmospheric Sciences 43, 17261759.Google Scholar
Liu, X., Liu, Z., Kutzbach, J.E., Clemens, S.C., Prell, W.L., 2006. Hemispheric insolation forcing of the Indian Ocean and Asian Monsoon: local versus remote impacts. Journal of Climate 19, 61956208.Google Scholar
Liu, Z.T., Colin, C., Trentesaux, A., Siani, G., Frank, N., Blamart, D., Farid, S., 2005. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quaternary Resources 63, 316328.Google Scholar
Markgraf, V., Whitlock, C., Haberle, S., 2007. Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallín Pollux, Coyhaique, Province Aisén (45°41′30″ S, 71°50′30″ W, 640 m elevation). Palaeogeography, Palaeoclimatology, Palaeoecology 254, 492507.Google Scholar
Mathur, H.N., Francis, H., Raj, S.F.H., Naithan, S., 1984. Ground water quality (pH) under different vegetative covers at Osamund (Nilgiri Hills). Indian Forester 10, 110115.Google Scholar
Meir, P., Wood, T.E., Galbraith, D.R., Brando, P.M., Da Costa, A.C.L., Rowland, L., Ferreira, L.V., 2015. Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. BioScience 65, 882892.Google Scholar
Mitchum, R.M. Jr., 1977. Seismic Stratigraphy and Global Changes of Sea Level: Part 11. Glossary of Terms used in Seismic Stratigraphy: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation, AAPG Memoir, 205–212.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. 2nd ed. Blackwell Scientific, Oxford.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853858.Google Scholar
Naqvi, S.M., Rogers, J.W., 1987. Precambrian Geology of India. Clarendon Press, Oxford.Google Scholar
Newnham, R.M., Lowe, D.J., Giles, T., Alloway, B.V., 2007. Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal. yr ago: support for an extended LGM. Journal of Quaternary Science 22, 517534.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., 1996. The southwest Indian Monsoon over the last 18000 years. Climate Dynamics 12, 213215.Google Scholar
Overpeck, J.T., 1993. The role and response of continental vegetation in the global climate system. In: Eddy, J.A., Oeschger, H. (Eds.), Global Changes in the Perspective of the Past. Wiley, New York, pp. 221237.Google Scholar
Paasche, Ø., Bakke, J., 2010. Defining the Little Ice Age. Climate of the Past Discussion 6, 21592175.Google Scholar
Peterson, L.C., Haug, G.H., 2006. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 3, 97113.Google Scholar
Plater, J., Boyle, J.F., Mayers, C., Turner, S.D., Stroud, R.W., 2006. Climate and human impact on lowland lake sedimentation in Central Coastal California: the record from c. 650 AD to the present. Regional Environmental Change 6, 7185.Google Scholar
Power, M.J, Whitlock, C., Bartlein, P., Stevens, L.R., 2006. Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75, 420436.Google Scholar
Pramod, P., Daniels, R.J.R., Joshi, N.V., Gadgil, M., 1997. Evaluating bird communities of Western Ghats to plan for a biodiversity friendly development. Current Science 73, 156162.Google Scholar
Prasad, V., Farooqui, A., Tripathi, S.K.M., Garg, R., Thakur, B., 2009. Evidence of late Palaeocene–early Eocene equatorial rain forest refugia in southern western Ghats, India. Journal of Biosciences 34, 777797.Google Scholar
Priyanka, R., Achyuthan, H., Geethanjali, K., Kumar, P., Chopra, S., 2018. Late Pleistocene paleoflood deposits identified by grain size signatures, Parsons Valley Lake, Nilgiris, Tamil Nadu. Journal of Geological Society of India 91, pp. 517–644.Google Scholar
Rajagopalan, G., Sukumar, R., Ramesh, R., 1997. Late Quaternary vegetational and climatic changes from tropical peats in southern India, an extended record up to 40,000 years BP. Current Science 73, 6063.Google Scholar
Ramisch, A., Lockot, G., Haberzettl, T., Hartmann, K., Kuhn, G., Lehmkuhl, F., Schimpf, S., et al., 2016. A persistent northern boundary of Indian summer monsoon precipitation over Central Asia during the Holocene. Scientific Reports 6, 25791.Google Scholar
Roy, P.D., Singhvi, A.K., 2016. Climate variation in the Thar Desert since the last glacial maximum and evaluation of the Indian monsoon. Revista Especializada en Ciencias Químico-Biológicas 19, 3244.Google Scholar
Ruiz-Zapata, B., Gil-García, M.J., Bustamante, I., 2010. Paleoenvironmental reconstruction of Las Tablas de Daimiel and its evolution during the Quaternary period. In: Sanchez-Carrillo, S., Angeler, D.G. (Eds.), Long-Term Research in Las Tablas de Daimiel. Springer, Dordrecht. pp. 2343.Google Scholar
Russella, J.M., Vogel, H., Konecky, B.L., Bijaksana, S., Huang, Y., Melles, M., Wattrus, N., Costa, K., King, J.W., 2014. Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P. Proceedings of the National Academy of Sciences USA 111, 51005105.Google Scholar
Sadler, P. M., 1999. The influence of hiatuses on sediment accumulation rates. GeoResearch Forum 5, 1540.Google Scholar
Schneider, T., Bischoff, T., Haug, G.H., 2014. Migrations and dynamics of the intertropical convergence zone. Nature 513, 4553.Google Scholar
Servant-Vildary, S., Servant, M., Jimenez, O., 2001. Holocene hydrological and climatic changes in the southern Bolivian Altiplano according to diatom assemblages in paleowetlands. Hydrobiologica 466, 267277.Google Scholar
Shin, S.I., Liu, Z., Otto-Bliesner, B.L., Brady, E.C., Kutzbach, J.E., Harrison, S.P., 2003. A simulation of the last glacial maximum climate using the NCAR CSM. Climate Dynamics 20, 127151.Google Scholar
Sinninghe Damsté, J.P., Verschuren, D., Ossebaar, J., Blokker, J., Houten, R., van der Meer, M.T.J., Plessen, B., Schouten, S., 2011. A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters 302, 236246.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C., 1993. Century scale events in monsoon climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Steinhilber, F., Beer, J., 2011. Solar activity—the past 1200 years. PAGES News 19(1), 56.Google Scholar
Steinke, S., Mohtadi, M., Prange, M., Varma, V., Pittauerova, D., Fischer, H.W., 2014. Mid- to late-Holocene Australian–Indonesian summer monsoon variability. Quaternary Science Reviews 93, 142154.Google Scholar
Sukumar, R., Ramesh, R., Pant, R.K., Rajagopalan, G., 1993. A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature 364, 703706.Google Scholar
Suryaprakash, I., 1999. Plant Communities in the Montane Region of Nilgiris, Southern India: Analysis of Present and Past Vegetation Based on Plant-Pollen Assemblages. PhD thesis, Sallm Ali School of Ecology and Environmental Sciences, Pondicherry University, Pondicherry, India.Google Scholar
Swarupanandan, K., Sasidharan, N., Chacko, K.C., Basha, S.C., 1998. Studies on the Shola Forest of Kerala. Kerala Forest Research Institute Research Report 158. Kerala Forest Research Institute, Peechi, India.Google Scholar
Thevenon, F., Adatte, T., Spangenberg, J.E., Anselmetti, F.S., 2012. Elemental (C/N ratios) and isotopic (δ15Norg, δ13Corg) compositions of sedimentary organic matter from a high-altitude mountain lake (Meidsee, 2661 m a.s.l., Switzerland): implications for late glacial and Holocene Alpine landscape evolution. The Holocene 22, 11351142.Google Scholar
Thomas, S.M., Palmer, M.W., 2007. The montane grasslands of the Western Ghats, India: community ecology and conservation. Community Ecology 8, 6773.Google Scholar
Tierney, J.E., Russell, J.M., Huang, Y., Jaap, S., Damsté, S., Hopmans, E.C., Cohen, A.S., 2008. Northern Hemisphere controls on tropical Southeast African climate during the past 60,000. Science 322, 252–255.Google Scholar
Tiwari, M., Ramesh, R., Somayajulu, B.K.L., Jull, A.J.T., Burr, S.G., 2006. Paleomonsoon precipitation deduced from a sediment core from the equatorial Indian Ocean. Geo-Marine Letters 26, 2330.Google Scholar
Usoskin, I.G., Solanki, S.K., Kovalstov, G.A., 2007. Grand minima and maxima of solar activity: new observational constraints. Astronomy & Astrophysics 471, 301309.Google Scholar
Vasanthy, G., 1988. Pollen analysis of late Quaternary sediments: evolution of upland savanna in Sandynallah (Nilgiris, south India). Review of Palaeobotany and Palynology 55, 175192.Google Scholar
Vishnu-Mittre Gupta, H.P., 1968. A living fossil plant community in South Indian hills. Current Science 37, 671672.Google Scholar
Wacker, L., Nemec, M., Bourquin, J., 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8), 931934.Google Scholar
Walker, M., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.P., Gibbard, P., Hoek, W., et al., 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24, 317.Google Scholar
Wang, L.J., Sarnthein, M., Erlenkeuser, H., Grimalt, J.O., Grootes, P.M., Heilig, S., Ivanova, E.V., Kienast, M., Pelejero, C., Pflaumann, U., 1999. East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, 245284.Google Scholar
Wang, Y., Liu, X., Herzschuh, U., 2010. Asynchronous evolution of the Indian and East Asian Summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews 103, 135153.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al., 2008. Mid- to late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.Google Scholar
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., Haug, G.H., 2007. Influence of the Intertropical convergence zone on the East Asian monsoon. Nature 445, 7477.Google Scholar
Yu, G., Xue, B., Wang, S., Liu, J., 2000. Lake records and LGM climate in China. Chinese Science Bulletin 45, 11581164.Google Scholar
Zhang, W., Ming, Q., Shi, Z., Chen, G., Niu, J., Lei, G., Chang, F., Zhang, H., 2014. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China. PLoS ONE 9(7 doi: 10.1371/journal.pone.0102167 Google Scholar
Zhong, W., Xue, J., Zheng, Y., Ma, Q., Cai, Y., Ouyang, J., Cao, J., Tang, X., 2012. Sediment geochemistry of Dahu Swamp in the Nanling Mountains, South China: implication for catchment weathering during the last 16,000 years. International Journal of Earth Science 101, 453462.Google Scholar
Supplementary material: File

Raja et al. supplementary material

Raja et al. supplementary material 1

Download Raja et al. supplementary material(File)
File 14.3 MB