Skip to main content
Log in

Diversity of microbial community and its metabolic potential for nitrogen and sulfur cycling in sediments of Phu Quoc island, Gulf of Thailand

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Although Phu Quoc island, Gulf of Thailand possesses diverse marine and coastal ecosystems, biodiversity and metabolic capability of microbial communities remain poorly investigated. The aim of our study was to evaluate the biodiversity and metabolic potential of sediment microbial communities in Phu Quoc island. The marine sediments were collected from three different areas and analyzed by using 16S rRNA gene-based amplicon approach. A total of 1,143,939 reads were clustered at a 97% sequence similarity into 8,331 unique operational taxonomic units, representing 52 phyla. Bacteria and archaea occupied averagely around 86% and 14%, respectively, of the total prokaryotic community. Proteobacteria, Planctomycetes, Chloroflexi, and Thaumarchaeota were the dominant phyla in all sediments, which were involved in nitrogen and sulfur metabolism. Sediments harboring of higher nitrogen sources were found to coincide with increased abundance of archaeal phylum Thaumarchaeota. Predictive functional analysis showed high abundance prokaryotic genes associated with nitrogen cycling including nifA-Z, amoABC, nirA, narBIJ, napA, nxrAB, nrfA-K, nirBD, nirS, nirK, norB-Z, nlnA, ald, and ureA-J, based on taxonomic groups detected by 16S rRNA sequencing. Although the key genes involved in sulfur cycling were found to be at low to undetectable levels, the other genes encoding for sulfur-related biological processes were present, suggesting that alternative pathways may be involved in sulfur cycling at our study site. In conclusion, our study for the first time shed light on diversity of microbial communities in Phu Quoc island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilkins LGE, Leray M, O'Dea A, Yuen B, Peixoto RS, Pereira TJ, Bik HM, Coil DA, Duffy JE, Herre EA, Lessios HA, Lucey NM, Mejia LC, Rasher DB, Sharp KH, Sogin EM, Thacker RW, Vega Thurber R, Wcislo WT, Wilbanks EG, Eisen JA (2019) Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol 17(11):e3000533. https://doi.org/10.1371/journal.pbio.3000533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Biol 19(14):R602–R614. https://doi.org/10.1016/j.cub.2009.05.046

    Article  CAS  PubMed  Google Scholar 

  3. Kappel CV (2005) Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. Front Ecol Environ 3(5):275–282. https://doi.org/10.1890/1540-9295(2005)003[0275:Lpotpt]2.0.Co;2

    Article  Google Scholar 

  4. Heiskanen A-S, Berg T, Uusitalo L, Teixeira H, Bruhn A, Krause-Jensen D, Lynam CP, Rossberg AG, Korpinen S, Uyarra MC, Borja A (2016) Biodiversity in marine ecosystems—European developments toward robust assessments. Front Mar Sci 3:184. https://doi.org/10.3389/fmars.2016.00184

    Article  Google Scholar 

  5. Hicks N, Liu X, Gregory R, Kenny J, Lucaci A, Lenzi L, Paterson DM, Duncan KR (2018) Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Front Microbiol 9:1730. https://doi.org/10.3389/fmicb.2018.01730

    Article  PubMed  PubMed Central  Google Scholar 

  6. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4(4):243–289. https://doi.org/10.1080/17451000801888726

    Article  Google Scholar 

  7. Varliero G, Bienhold C, Schmid F, Boetius A, Molari M (2019) Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Front Microbiol 10:665–665. https://doi.org/10.3389/fmicb.2019.00665

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jorgensen BB, Boetius A (2007) Feast and famine--microbial life in the deep-sea bed. Nat Rev Microbiol 5(10):770–781. https://doi.org/10.1038/nrmicro1745

    Article  CAS  PubMed  Google Scholar 

  9. Wei CL, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, Soliman Y, Huettmann F, Qu F, Yu Z, Pitcher CR, Haedrich RL, Wicksten MK, Rex MA, Baguley JG, Sharma J, Danovaro R, MacDonald IR, Nunnally CC, Deming JW, Montagna P, Levesque M, Weslawski JM, Wlodarska-Kowalczuk M, Ingole BS, Bett BJ, Billett DS, Yool A, Bluhm BA, Iken K, Narayanaswamy BE (2010) Global patterns and predictions of seafloor biomass using random forests. PLoS One 5(12):e15323. https://doi.org/10.1371/journal.pone.0015323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Chen M, Huang J, Guo X, Zhang Y, Liu D, Wu R, He H, Wang J (2019) Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS One 14(4):e0215328. https://doi.org/10.1371/journal.pone.0215328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11(8):2148–2163. https://doi.org/10.1111/j.1462-2920.2009.01935.x

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M (2018) Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front Microbiol 9:2402–2402. https://doi.org/10.3389/fmicb.2018.02402

    Article  PubMed  PubMed Central  Google Scholar 

  13. Soliman T, Reimer JD, Yang S-Y, Villar-Briones A, Roy MC, Jenke-Kodama H (2017) Diversity of microbial communities and quantitative chemodiversity in layers of marine sediment cores from a Causeway (Kaichu-Doro) in Okinawa Island, Japan. Front Microbiol 8:2451–2451. https://doi.org/10.3389/fmicb.2017.02451

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67(1):387–395. https://doi.org/10.1128/aem.67.1.387-395.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69(5):2463–2483. https://doi.org/10.1128/aem.69.5.2463-2483.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng BW, Li XR, Wang JH, Hu ZY, Meng H, Xiang LY, Quan ZX (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70(2):80–92. https://doi.org/10.1111/j.1574-6941.2009.00772.x

    Article  CAS  PubMed  Google Scholar 

  17. Petro C, Zancker B, Starnawski P, Jochum LM, Ferdelman TG, Jorgensen BB, Roy H, Kjeldsen KU, Schramm A (2019) Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol 10:758. https://doi.org/10.3389/fmicb.2019.00758

    Article  PubMed  PubMed Central  Google Scholar 

  18. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb Ecol 50(3):447–462. https://doi.org/10.1007/s00248-005-0005-6

    Article  CAS  PubMed  Google Scholar 

  19. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl Environ Microbiol 69(12):7224–7235. https://doi.org/10.1128/aem.69.12.7224-7235.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tin HT, Nam LH, Vinh BT (2015) Mechanism of beach erosion at the west of Phu Quoc Island, Southern Vietnam. Vietnam Ear Sci 36(1):6. https://doi.org/10.15625/0866-7187/36/1/4143

    Article  Google Scholar 

  21. Huu SN, Trung TH, Van ND The negative impacts of artificial islands on the beach erosion in the eastern of Phu Quoc Island. In Singapore, 2020. Geotechnics for Sustainable Infrastructure Development. Springer Singapore, pp 1367-1374

  22. Somboonna N, Wilantho A, Monanunsap S, Chavanich S, Tangphatsornruang S, Tongsima S (2017) Microbial communities in the reef water at Kham Island, lower Gulf of Thailand. PeerJ 5:e3625–e3625. https://doi.org/10.7717/peerj.3625

    Article  PubMed  PubMed Central  Google Scholar 

  23. Somboonna N, Wilantho A, Rerngsamran P, Tongsima S (2019) Marine bacterial diversity in coastal Sichang island, the upper Gulf of Thailand, in 2011 wet season. Front Mar Sci 6:308. https://doi.org/10.3389/fmars.2019.00308

    Article  Google Scholar 

  24. Zhao X, Cheng J (2011) Organic matter composition in sediments of the Baiyangdian Lake in China. Procedia Environ Sci 10:1768–1773. https://doi.org/10.1016/j.proenv.2011.09.277

    Article  CAS  Google Scholar 

  25. Alexiades SA, Jackson ML (1966) Quantitative clay mineralogical analysis of soils and sediments. Clay Miner 14(1):35–52. https://doi.org/10.1346/CCMN.1966.0140104

    Article  CAS  Google Scholar 

  26. Gibson CA, O'Reilly CM, Conine AL, Jobs W, Belli S (2015) Organic matter carbon, nitrogen, and phosphorous from a single persulfate digestion. Limnol Oceanogr Methods 13(4):e10023. https://doi.org/10.1002/lom3.10023

    Article  Google Scholar 

  27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  28. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  30. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  31. Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Bioinformatics Chapter 10:Unit10.17-10.17. https://doi.org/10.1002/0471250953.bi1007s36

  32. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35. https://doi.org/10.1186/1471-2105-12-35

    Article  PubMed  PubMed Central  Google Scholar 

  33. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  34. Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D'Hondt S (2016) Bacterial diversity and community composition from seasurface to subseafloor. ISME J 10(4):979–989. https://doi.org/10.1038/ismej.2015.175

    Article  PubMed  Google Scholar 

  35. Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y (2016) Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar Drugs 14(7):129. https://doi.org/10.3390/md14070129

    Article  CAS  PubMed Central  Google Scholar 

  36. Du ZJ, Wang ZJ, Zhao JX, Chen GJ (2016) Woeseia oceani gen. nov., sp. nov., a chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov. Int J Syst Evol Microbiol 66(1):107–112. https://doi.org/10.1099/ijsem.0.000683

    Article  CAS  PubMed  Google Scholar 

  37. Mussmann M, Pjevac P, Kruger K, Dyksma S (2017) Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J 11(5):1276–1281. https://doi.org/10.1038/ismej.2016.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glockner FO, Harder J (2013) Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics 9:51–61. https://doi.org/10.1016/j.margen.2012.12.001

    Article  PubMed  Google Scholar 

  39. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78(23):8264–8271. https://doi.org/10.1128/aem.01821-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamada T, Sekiguchi Y (2009) Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi 'subphylum i' with natural and biotechnological relevance. Microbes Environ 24(3):205–216. https://doi.org/10.1264/jsme2.me09151s

    Article  PubMed  Google Scholar 

  41. Dombrowski N, Seitz KW, Teske AP, Baker BJ (2017) Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5(1):106. https://doi.org/10.1186/s40168-017-0322-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dombrowski N, Teske AP, Baker BJ (2018) Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun 9(1):4999. https://doi.org/10.1038/s41467-018-07418-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao R, Summers ZM, Christman GD, Yoshimura KM, Biddle JF (2020) Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico. Sci Rep 10(1):5772. https://doi.org/10.1038/s41598-020-62840-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Costa PS, Reis MP, Ávila MP, Leite LR, de Araújo FMG, Salim ACM, Oliveira G, Barbosa F, Chartone-Souza E, Nascimento AMA (2015) Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS One 10(3):e0119465–e0119465. https://doi.org/10.1371/journal.pone.0119465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8(7):1464–1475. https://doi.org/10.1038/ismej.2013.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Black EM, Chimenti MS, Just CL (2019) Metagenomic analysis of nitrogen-cycling genes in upper Mississippi river sediment with mussel assemblages. MicrobiologyOpen 8(5):e00739–e00739. https://doi.org/10.1002/mbo3.739

    Article  CAS  PubMed  Google Scholar 

  47. Yu T, Li M, Niu M, Fan X, Liang W, Wang F (2018) Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea. Appl Microbiol Biotechnol 102(1):447–459. https://doi.org/10.1007/s00253-017-8594-9

    Article  CAS  PubMed  Google Scholar 

  48. Sela-Adler M, Ronen Z, Herut B, Antler G, Vigderovich H, Eckert W, Sivan O (2017) Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front Microbiol 8(766). https://doi.org/10.3389/fmicb.2017.00766

  49. Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, Scheller S, Tavormina PL, Hettich RL, Mukhopadhyay B, Orphan VJ (2018) Comparative genomics and proteomic analysis of assimilatory sulfate reduction pathways in anaerobic methanotrophic archaea. Front Microbiol 9:2917–2917. https://doi.org/10.3389/fmicb.2018.02917

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P (2020) Understanding the structure and function of microbial community in acid mine drainage system of Malanjkhand Copper Project, India. Res Square. https://doi.org/10.21203/rs.2.19768/v2

  51. Zhang X, Niu J, Liang Y, Liu X, Yin H (2016) Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 17(1):21. https://doi.org/10.1186/s12863-016-0330-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Vietnam Academy of Science and Technology (VAST) and Ministry of Natural Resources and Environment (MONRE) under Grant number VAST.ĐA47.12/16-19 within the framework of Decision No. 47/2006/QD-TTg on “General plan for survey and management of marine resources and environment until 2010, with a vision to 2020.”

Author information

Authors and Affiliations

Authors

Contributions

NTQ, HTD, DMT, THNV, QVN, QHN, and PBC: experimental procedures, data preparation and interpretation, and writing the manuscript. HTD, DJHS, HK, WJL, THL, and DVT: experimental procedures and reviewing the manuscript. NTQ and QTP: writing the manuscript. DMT, KTN, and HHC: manuscript preparation and funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dinh Man Tran or Quyet Tien Phi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Acacio Aparecido Navarrete

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3246 kb)

ESM 2

(XLSX 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quach, N.T., Dam, H.T., Tran, D.M. et al. Diversity of microbial community and its metabolic potential for nitrogen and sulfur cycling in sediments of Phu Quoc island, Gulf of Thailand. Braz J Microbiol 52, 1385–1395 (2021). https://doi.org/10.1007/s42770-021-00481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00481-8

Keywords

Navigation