Skip to main content
Log in

Measurement of the 232Th(n,f) cross section in the 1–200 MeV range at the CSNS Back-n

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The 232Th(n,f) cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle. Using the time-of-flight method and a multi-cell fast-fission ionization chamber, a novel measurement of the 232Th(n,f) cross section relative to 235U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source (Back-n). The fission event-neutron energy spectra of 232Th and 235U fission cells were measured in the single-bunch mode. Corrected 232Th/235U fission cross-sectional ratios were obtained, and the measurement uncertainties were 2.5–3.7% for energies in the 2–20 MeV range and 3.6–6.2% for energies in the 20–200 MeV range. The 232Th(n,f) cross section was obtained by introducing the standard cross section of 235U(n,f). The results were compared with those of previous theoretical calculations, measurements, and evaluations. The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty, and 232Th fission resonances were observed in the 1–3 MeV range. The present results provide 232Th(n,f) cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.09535 and https://cstr.cn/31253.11.sciencedb.09535.

References

  1. N. Colonna, A. Tsinganis, R. Vlastou et al., The fission experimental programme at the CERN n_TOF facility: status and perspectives. Eur. Phys. J. A 56, 48 (2020). https://doi.org/10.1140/epja/s10050-020-00037-8

    Article  ADS  Google Scholar 

  2. C.Y. Li, X.B. Xia, J. Cai et al., Radiation dose distribution of liquid fueled thorium molten salt reactor. Nucl. Sci. Tech. 32, 22 (2021). https://doi.org/10.1007/s41365-021-00857-3

    Article  Google Scholar 

  3. P. Yang, Z.K. Lin, W.S. Wan et al., Preliminary neutron study of a thorium-based molten salt energy amplifier. Nucl. Sci. Tech. 31, 41 (2020). https://doi.org/10.1007/s41365-020-0750-8

    Article  Google Scholar 

  4. International Atomic Energy Agency (IAEA), Thorium fuel cycle—potential benefits and challenges. (IAEA-TECDOC-1450, 2005), Accessed 19 Jul 2021. https://www.iaea.org/publications/7192

  5. U. Abbondanno, S. Andriamonje, J. Andrzejewski et al., Measurements of fission cross sections for the isotopes relevant to the thorium fuel cycle. CERN/INTC 2001–25, 08 Aug 2001. https://cds.cern.ch/record/514756/files/intc-p-145.pdf

  6. S. Bjørnholm, J.E. Lynn, The double-humped fission barrier. Rev. Mod. Phys. 52, 725 (1980). https://doi.org/10.1103/RevModPhys.52.725

    Article  ADS  Google Scholar 

  7. V. Michalopoulou, M. Axiotis, S. Chasapoglou et al., Measurement of the 232Th(n, f) cross section with quasi-monoenergetic neutron beams in the energy range 2–18 MeV. Eur. Phys. J. A 57, 277 (2021). https://doi.org/10.1140/epja/s10050-021-00590-w

    Article  ADS  Google Scholar 

  8. P. Möller, J. Nix., Calculation of Fission Barriers, in Proceedings of the Third IAEA symposium on the physics and chemistry of fission (Rochester, New York, 1974), p. 103. https://www.osti.gov/biblio/4458292/

  9. J.W. Behrens, J.C. Browne, E. Ables, Measurement of the neutron-induced fission cross section of 232Th relative to 235U from 0.7 to 30 MeV. Nucl. Sci. Eng. 81(4), 512–519 (1982). https://doi.org/10.13182/NSE82-A21440

    Article  ADS  Google Scholar 

  10. J.W. Meadows., The fission cross sections of some thorium, uranium, neptunium and plutonium isotopes relative to 235U. Techn. Rep. No. ANL/NDM-83 (1983). https://doi.org/10.2172/5539010

  11. P.W. Lisowski, J.L. Ullman, S.J. Balestrini et al., Neutron induced fission cross section ratios for 232Th, 235,238U, 237Np and 239Pu from 1 to 400 MeV. in Conference. on Nuclear data for science and technology p. 97 (1988). https://www.osti.gov/biblio/6967752

  12. B.I. Fursov, EYu. Baranov, M.P. Klemyshev et al., Measurements of the fission cross-section ratios 232Th/235U and 234U/235U for 0.13–7.4 MeV neutrons. At. Energiya 71(4), 827–831 (1991). https://doi.org/10.1007/BF01123535

    Article  Google Scholar 

  13. O. Shcherbakov, A. Donets, A. Evdokimov et al., Neutron-induced fission of 233U, 238U, 232Th, 239Pu,237Np, natPb and 209Bi relative to 235U in the energy range 1–200 MeV. Nucl. Sci. Technol. 39, 230 (2002). https://doi.org/10.1080/00223131.2002.10875081

    Article  Google Scholar 

  14. Y.M. Gledenov, Z.Q. Cui, J. Liu et al., Cross section of the 232Th(n, f) reaction in the MeV neutron energy region. Eur. Phys. J. A 58, 86 (2022). https://doi.org/10.1140/epja/s10050-022-00716-8

    Article  ADS  Google Scholar 

  15. Y.H. Chen, Y.W. Yang, Z.Z. Ren et al., Measurement of neutron-induced fission cross sections of 232Th from 1 to 300 MeV at CSNS Back-n. Phys. Lett. B 839, 137832 (2023). https://doi.org/10.1016/j.physletb.2023.137832

    Article  Google Scholar 

  16. D.A. Brown, M.B. Chadwick, R. Capote et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001

    Article  ADS  Google Scholar 

  17. O. Iwamoto, N. Iwamoto, K. Shibata et al., Status of JENDL. In EPJ Web of conferences, vol. 239, (2020), p. 09002. https://doi.org/10.1051/epjconf/2F202023909002

  18. Z.G. Ge, R.R. Xu, H.C. Wu et al., CENDL-3.2: The new version of Chinese general purpose evaluated nuclear data library. EPJ Web. Conf. 239, 09001 (2020). https://doi.org/10.1051/epjconf/202023909001

    Article  Google Scholar 

  19. A.I. Blokhin, E.V. Gai, A.V. Ignatyuk et al., New version of neutron evaluated data library BROND-31. Yad. Reak. Konst. 2, 62 (2016)

    Google Scholar 

  20. A. Plompen, O. Cabellos, C. De SaintJean et al., The joint evaluated fission and fusion nuclear data library, JEFF-33. Eur. Phys. J. A 56, 181 (2020). https://doi.org/10.1140/epja/s10050-020-00141-9

    Article  ADS  Google Scholar 

  21. J.Y. Tang, Q. An, J.B. Bai et al., Back-n white neutron source at CSNS and its applications. Nucl. Sci. Tech. 32, 11 (2021). https://doi.org/10.1007/s41365-021-00846-6

    Article  Google Scholar 

  22. H.T. Jing, J.Y. Tang, H.Q. Tang et al., Studies of back-streaming white neutrons at CSNS. Nucl. Instrum. Meth. A. 91–96, 621 (2010). https://doi.org/10.1016/j.nima.2010.06.097

    Article  Google Scholar 

  23. Y.W. Yang, Z.W. Wen, Z.J. Han et al., A multi-cell fission chamber for fission cross-section measurements at the back-n white neutron beam of CSNS. Nucl. Instrum. Meth. A. 486–491, 940 (2019). https://doi.org/10.1016/j.nima.2019.06.014

    Article  Google Scholar 

  24. J. Wen, Y.W. Yang, Z.W. Wen et al., A multi-layered fast ionization chamber prototype for fission cross section measurements. J. Instrum. 13(07), P07020 (2018). https://doi.org/10.1088/1748-0221/13/07/P07020

    Article  Google Scholar 

  25. X.Y. Liu, Y.W. Yang, R. Liu et al., Measurement of the neutron total cross section of carbon at the back-n white neutron beam of CSNS. Nucl. Sci. Tech. 30, 139 (2019). https://doi.org/10.1007/s41365-019-0660-9

    Article  Google Scholar 

  26. A.D. Carlson, V.G. Pronyaev, R. Capote et al., Evaluation of the neutron data standards. Nucl. Data Sheets 148, 143–188 (2018). https://doi.org/10.1016/j.nds.2018.02.002

    Article  ADS  Google Scholar 

  27. Y.H. Chen, G.Y. Luan, J. Bao et al., Neutron energy spectrum measurement of the Back-n white neutron source ES#2 at CSNS. Eur. Phys. J. A. 55, 7 (2019). https://doi.org/10.1140/epja/i2019-12808-1

    Article  ADS  Google Scholar 

  28. Q. Wang, P. Cao, X. Qi et al., General-purpose readout electronics for white neutron source at China spallation neutron source. Rev. Sci. Instrum. 89(1), 013511 (2018). https://doi.org/10.1063/1.5006346

    Article  ADS  Google Scholar 

  29. J. Wen, Y. Yang, Z. Han et al., Accurate quantification of high purity uranium in coatings by small solid angle method. Appl. Radiat. Isot. 164, 109300 (2020). https://doi.org/10.1016/j.apradiso.2020.109300

    Article  Google Scholar 

  30. Z.Z. Ren, Y.W. Yang, J. Wen et al., Measurement of the 236U (n, f) cross section for neutron energies from 0.4 MeV to 40 MeV from the back-streaming white neutron beam at the China spallation neutron source. Phys. Rev. C 102, 034604 (2020). https://doi.org/10.1103/PhysRevC.102.034604

    Article  ADS  Google Scholar 

  31. R. Brun, F. Rademakers, ROOT—an object oriented data analysis framework. Nucl. Instrum. Meth. A. 389, 81 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

    Article  ADS  Google Scholar 

  32. J.A. Grundl, D.M. Gilliam, N.D. Dudey et al., Measurement of absolute fission rates. Nucl. Technol. 25(2), 237–257 (1975). https://doi.org/10.13182/NT75-A24366

    Article  ADS  Google Scholar 

  33. P.H. White, Alpha and fission counting of thin foils of fissile material. Nucl. Instrum. Methods 79, 1–12 (1970). https://doi.org/10.1016/0029-554X(70)90002-9

    Article  ADS  Google Scholar 

  34. Z.Z. Ren, Y.W. Yang, R. Liu et al., Measurement of the 236,238U(n, f) cross sections from the threshold to 200 MeV at CSNS Back-n. Eur. Phys. J. A 59, 5 (2023). https://doi.org/10.1140/epja/s10050-022-00910-8

    Article  ADS  Google Scholar 

  35. J.F. Briesmeister, MCNP-A general Monte Carlo N particle transport code, LA-13709-M (Los Alamos National Laboratory, Los Alamos, 2000)

    Google Scholar 

  36. J. Wen, Y.W. Yang, Z.W. Wen et al., Measurement of the U-238/U-235 fission cross section ratio at CSNS—back-n WNS. Ann. Nucl. Energy. 140, 107301 (2020). https://doi.org/10.1016/j.anucene.2019.107301

    Article  Google Scholar 

  37. X.R. Hu, G.T. Fan, W. Jiang et al., Measurements of the 197Au(n, γ) cross section up to 100 keV at the CSNS Back-n facility. Nucl. Sci. Tech. 32, 101 (2021). https://doi.org/10.1007/s41365-021-00931-w

    Article  Google Scholar 

  38. J.S. Zhang, UNF code for fast neutron reaction data calculations. Nucl. Sci. Eng. 142, 2 (2002). https://doi.org/10.13182/NSE02-02

    Article  Google Scholar 

  39. ADS-HE, IAEA. https://www-nds.iaea.org/exfor/endf.htm

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zhi-Zhou Ren, Yi-Wei Yang, Yong-Hao Chen, Rong Liu, Bang-Jiao Ye, Jie Wen, Hai-Rui Guo, Zi-Jie Han, Qi-Ping Chen, Zhong-Wei Wen, Wei-Li Sun, Han Yi, Xing-Yan Liu, Tao Ye, Jiang-Bo Bai, Qi An, Jie Bao, Yu Bao, Ping Cao, Hao-Lei Chen, Zhen Chen, Zeng-Qi Cui, Rui-Rui Fan, Chang-Qing Feng, Ke-Qing Gao, Xiao-Long Gao, Min-Hao Gu, Chang-Cai Han, Guo-Zhu He, Yong-Cheng He, Yang Hong, Yi-Wei Hu, Han-Xiong Huang, Xi-Ru Huang, Hao-Yu Jiang, Wei Jiang, Zhi-Jie Jiang, Han-Tao Jing, Ling Kang, Bo Li, Chao Li, Jia-Wen Li, Qiang Li, Xiao Li, Yang Li, Jie Liu, Shu-Bin Liu, Ze Long, Guang-Yuan Luan, Chang-Jun Ning, Meng-Chen Niu, Bin-Bin Qi, Jie Ren, Xi-Chao Ruan, Zhao-Hui Song, Kang Sun, Zhi-Jia Sun, Zhi-Xin Tan, Jing-Yu Tang, Xin-Yi Tang, Bin-Bin Tian, Li-Jiao Wang, Peng-Cheng Wang, Zhao-Hui Wang, Xiao-Guang Wu, Xuan Wu, Li-Kun Xie, Xiao-Yun Yang, Li Yu, Tao Yu, Yong-Ji Yu, Guo-Hui Zhang, Lin-Hao Zhang, Qi-Wei Zhang, Xian-Peng Zhang, Yu-Liang Zhang, Zhi-Yong Zhang, Lu-Ping Zhou, Zhi-Hao Zhou, and Ke-Jun Zhu. The first draft of the manuscript was written by Zhi-Zhou Ren, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rong Liu.

Ethics declarations

Conflict of interest

Jing-Yu Tang, Ke-Jun Zhu, and Chang-Qing Feng are editorial board members for Nuclear Science and Techniques and were not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11675155, 11790321, and 12075216) and the National Key Research and Development Plan (No. 2016YFA0401603).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, ZZ., Yang, YW., Chen, YH. et al. Measurement of the 232Th(n,f) cross section in the 1–200 MeV range at the CSNS Back-n. NUCL SCI TECH 34, 115 (2023). https://doi.org/10.1007/s41365-023-01271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01271-7

Keywords

Navigation