Skip to main content
Log in

Afterpulse measurement of JUNO 20-inch PMTs

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, we present the large photomultiplier tube (PMT) afterpulse measurement results obtained from the Jiangmen underground neutrino observatory (JUNO) experiment. A total of 11 dynode-PMTs (R12860) from the Hamamatsu company (Hamamatsu Photonics K.K. (HPK)) and 150 micro-channel plate PMTs (MCP-PMTs, GDB-6201) from the NNVT company (North Night Vision Technology Co., Ltd. (NNVT)) were tested. Subsequently, an afterpulse model was built according to the afterpulse time distribution and the probability of occurrence for these two types of PMTs. The average ratio of the total afterpulse charge with a delay between 0.5 \(\upmu\)s and 20 \(\upmu\)s to the primary pulse charge is \(\sim\) 5.7% (13.2%) for the tested MCP-PMTs (dynode-PMTs). The JUNO experiment will deploy 20,012 20-inch PMTs; this study will benefit detector simulation, event reconstruction, and data analysis regarding the JUNO experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. MCP-PMT’s typical working HV is approximately 1750 V and dynode-PMT’s HV is approximately 1820 V.

References

  1. Z. Djurcic et al., [JUNO Collaboration], JUNO Conceptual Design Report. (2015). arXiv:1508.07166 [physics.ins-det]

  2. F.P. An, G.P. An, Q. An et al., Neutrino physics with JUNO. J. Phys. G 43, 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/030401

  3. JUNO Collaboration, JUNO physics and detector. Prog. Part. Nucl. Phys. 123, 103927 (2022). https://doi.org/10.1016/j.ppnp.2021.103927

  4. G. Zhu, J. Liu, Q. Wang et al., Ultrasonic positioning system for the calibration of central detector. Nucl. Sci. Tech. 30, 5 (2019). https://doi.org/10.1007/s41365-018-0530-x

  5. C. Yang, Y. Huang, J. Xu et al., Reconstruction of a muon bundle in the JUNO central detector. Nucl. Sci. Tech. 33, 59 (2022). https://doi.org/10.1007/s41365-022-01049-3

  6. Z. Li, Z. Qian, J. He et al., Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs. Nucl. Sci. Tech. 33, 93 (2022). https://doi.org/10.1007/s41365-022-01078-y

  7. P. Coates, A theory of afterpulse formation in photomultipliers and the prepulse height distribution. J. Phys. D Appl. Phys. 6, 1862 (1973). https://doi.org/10.1088/0022-3727/6/16/306

    Article  ADS  Google Scholar 

  8. N. Akchurin, H. Kim, A study on ion initiated photomultiplier afterpulses. Nucl. Instrum. Meth. A 574, 121 (2007). https://doi.org/10.1016/j.nima.2007.01.093

    Article  ADS  Google Scholar 

  9. K. Ma, W. Kang, J. Ahn et al., Time and amplitude of afterpulse measured with a large size photomultiplier tube. Nucl. Instrum. Meth. A 629, 93 (2011). https://doi.org/10.1016/j.nima.2010.11.095

    Article  ADS  Google Scholar 

  10. J. Haser, F. Kaether, C. Langbrandtner et al., Afterpulse measurements of R7081 photomultipliers for the Double Chooz experiment. J. Instrum. 8, P04029 (2013). https://doi.org/10.1088/1748-0221/8/04/P04029

  11. X. Zhao, Z. Tang, C. Li et al., Afterpulse measurement for 8-inch candidate PMTs for LHAASO. J. Instrum. 11, T05002 (2016). https://doi.org/10.1088/1748-0221/11/05/T05002

  12. L. Campbell, Afterpulse measurement and correction. Rev. Sci. Inst. 63, 5794 (1992). https://doi.org/10.1063/1.1143365

    Article  ADS  Google Scholar 

  13. W. Luo, T. Yu, M. Chen et al., Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators. Opt. Express 22, 32098–32106 (2014). https://doi.org/10.1364/OE.22.032098

    Article  ADS  Google Scholar 

  14. Y. Chang, G. Huang, Y. Heng et al., The R &D of the 20 in. MCP-PMTs for JUNO. Nucl. Instrum. Meth. A 824, 143 (2016). https://doi.org/10.1016/j.nima.2015.10.106

    Article  ADS  Google Scholar 

  15. H. Zhang, Z. Wang, W. Wang et al., Tested performance of JUNO 20’’ PMTs. J. Phys. Conf. Ser. 1468, 012197 (2020). https://doi.org/10.1088/1742-6596/1468/1/012197

  16. L. Chen, J. Tian, C. Liu et al., Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment. Nucl. Instrum. Meth. A 827, 124 (2016). https://doi.org/10.1016/j.nima.2016.04.100

    Article  ADS  Google Scholar 

  17. S.S. Stevens, J.W. Longworth, Late output pulses from fast photomultipliers. IEEE Trans. Nucl. Sci. 19, 356 (1972). https://doi.org/10.1109/TNS.1972.4326532

    Article  ADS  Google Scholar 

  18. B. Lubsandorzhiev, R. Vasiljev, Y. Vyatchin et al., Photoelectron backscattering in vacuum phototubes. Nucl. Instrum. Meth. A 567, 12 (2006). https://doi.org/10.1016/j.nima.2006.05.047

    Article  ADS  Google Scholar 

  19. B. Lubsandorzhiev, P. Pokhil, R. Vasiljev et al., Studies of prepulses and late pulses in the 8’’ electron tubes series of photomultipliers. Nucl. Instrum. Meth. A 442, 452 (2000). https://doi.org/10.1016/S0168-9002(99)01272-3

    Article  ADS  Google Scholar 

  20. J. Brack, B. Delgado, J. Felde et al., Characterization of the Hamamatsu R11780 12 in. Photomultiplier tube. Nucl. Instrum. Meth. A 712, 162 (2013). https://doi.org/10.1016/j.nima.2013.02.022

    Article  ADS  Google Scholar 

  21. J. Wang, N. Anfimov, J. Guo et al., Database system for managing 20,000 20-inch PMTs at JUNO. Nucl. Sci. Tech. 33, 24 (2022). https://doi.org/10.1007/s41365-022-01009-x

    Article  Google Scholar 

  22. N. Anfimov, Large photocathode 20-inch PMT testing methods for the JUNO experiment. J. Instrum. 12, C06017 (2017). https://doi.org/10.1088/1748-0221/12/06/C06017

  23. B. Wonsak, A. Tietzsch, T. Sterr et al., A container-based facility for testing 20’000 20-inch PMTs for JUNO. J. Instrum. 16, T08001 (2021). https://doi.org/10.1088/1748-0221/16/08/T08001

  24. A. Abusleme, T. Adam, S. Ahmad et al., Mass Testing and Characterization of 20-inch PMTs for JUNO. arXiv:2205.08629 [physics.ins-det]

  25. Thorlabs, Inc., https://www.thorlabs.com. Accessed 20 May (2022)

  26. T. Hakamata, H. Kume, K. Okano et al., Photomultiplier tubes: basics and applications. Hamamatsu Photonics KK Electron Tube Division. Hamamatsu City (2006). https://www.hamamatsu.com. Accessed 20 May (2022)

  27. Y. Zhang, Z. Wang, M. Li et al., Study of 20-inch PMTs dark count generated large pulses. arXiv:2206.07456 [physics.ins-det]

  28. C. Liu, M. Li, Z. Wang et al., Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia. arXiv:2208.08264 [physics.ins-det]

  29. Y. Cheng, S. Qian, Z. Ning et al., The high-speed after-pulse measurement system for PMT. J. Instrum. 13, P05014 (2018). https://doi.org/10.1088/1748-0221/13/05/P05014

  30. S. Aiello, S. Akrame, F. Ameli et al., Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. J. Instrum. 13, P05035 (2018). https://doi.org/10.1088/1748-0221/13/05/P05035

  31. U. Akgun, A. Ayan, G. Aydin et al., Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes. J. Instrum. 3, T01001 (2008). https://doi.org/10.1088/1748-0221/3/01/T01001

  32. F. Kaether, C. Langbrandtner, Transit time and charge correlations of single photoelectron events in R7081 photomultiplier tubes. J. Instrum. 7, P09002 (2012). https://doi.org/10.1088/1748-0221/7/09/P09002

  33. K. Tudyka, G. Adamiec, A. Bluszcz, Simulation of He+ induced afterpulses in PMTs. Rev. Sci. Instrum. 87, 063120 (2016). https://doi.org/10.1063/1.4954511

  34. H. Zhang, Z. Wang, F. Luo et al., Gain and charge response of 20’’ MCP and dynode PMTs. J. Instrum. 16, T08009 (2021). https://doi.org/10.1088/1748-0221/16/08/T08009

  35. Q. Wu, S. Qian, Y. Cao et al., The status of the 20-inch MCP-PMT and its APR test result. Nuclear Sci. Symp. Med. Imaging Conf. 2019, 1 (2019). https://doi.org/10.1109/NSS/MIC42101.2019.9059825

  36. Q. Wu, S. Qian, L. Ma et al., Study of after-pulses in the 20-inch HQE-MCP-PMT for the JUNO experiment. Nucl. Instrum. Meth. A 1003, 16 (2021). https://doi.org/10.1016/j.nima.2021.165351

    Article  Google Scholar 

  37. P. Amaudruz, M. Batygov, B. Beltran et al., In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment. Nucl. Instrum. Meth. A 922, 373 (2019). https://doi.org/10.1016/j.nima.2018.12.058

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA10011100), Joint Institute of Nuclear Research (JINR), Russia and Lomonosov Moscow State University in Russia, joint Russian Science Foundation (RSF), DFG (Deutsche Forschungsgemeinschaft), and National Natural Science Foundation of China (Nos. 12090062 and 12075087). The authors acknowledge all their colleagues from the JUNO collaboration who operated the 20-inch PMT testing system.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Anfimov, N., Chen, Y. et al. Afterpulse measurement of JUNO 20-inch PMTs. NUCL SCI TECH 34, 12 (2023). https://doi.org/10.1007/s41365-022-01162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01162-3

Keywords

Navigation