Skip to main content
Log in

Relative contribution of stomatal parameters in influencing WUE among rice mutants differing in leaf mass area

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Water use efficiency (WUE) is an important physiological trait that has potential in sustaining crop productivity under water-limited condition. WUE can be increased by improving carbon gain and/or reducing transpiration. Normally, carbon gain and transpiration are inter-related and hence a trade-off exists between transpiration and WUE. Therefore, factors that influence these traits and their inter-relationship need to be identified and characterised. Here we report that leaf mass area (LMA) has one such trait that regulate WUE by influencing carbon gain. Extensive screening of EMS induced mutant population of Nagina-22 (N22) led to identification of contrasting LMA mutants. The high LMA mutant with 27% higher LMA (5.10 mg cm−2) than N22, and a low LMA mutant (4.00 mg cm−2) with comparable canopy leaf area and root weight were selected to study the influence of stomatal density and size on cumulative water transpired (CWT) and WUE under two soil moisture conditions (100% FC and 50% FC). The high LMA mutant, had higher stomatal density leading to increased CWT. But, a reduction in stomatal size on both abaxial and adaxial surfaces under water-limited conditions did not influence CWT. Increased photosynthetic efficiency due to higher leaf thickness led to higher carbon gain and hence higher WUE. The results indicate that improving carbon assimilation through higher LMA would significantly circumvent the trade-off between water loss and biomass accumulation leading to higher WUE. Thus, high chloroplast capacity types would have higher WUE despite relatively high water use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., Van Arkel, G., & Pereira, A. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. The Plant Cell, 16(9), 2463–2480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arredondo, J. T., & Schnyder, H. (2003). Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. New Phytologist, 158(2), 305–314.

    Google Scholar 

  • Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.

    PubMed  PubMed Central  Google Scholar 

  • Blake, T. J., Tschaplinski, T. J., & Eastham, A. (1984). Stomatal control of water use efficiency in poplar clones and hybrids. Canadian Journal of Botany, 62(7), 1344–1351.

    Google Scholar 

  • Blum, A. (2011). Drought resistance—Is it really a complex trait? Functional Plant Biology, 38(10), 753–757.

    PubMed  Google Scholar 

  • Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., et al. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384.

    CAS  PubMed  Google Scholar 

  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55(407), 2447–2460.

    CAS  PubMed  Google Scholar 

  • Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., et al. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239–3244.

    CAS  Google Scholar 

  • Evans, J., & Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell and Environment, 24(8), 755–767.

    CAS  Google Scholar 

  • Fageria, N. K. (2003). Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in lowland rice. Communications in Soil Science and Plant Analysis, 34(1–2), 259–270.

    CAS  Google Scholar 

  • Fageria, N. K. (2007). Yield physiology of rice. Journal of Plant Nutrition, 30(6), 843–879.

    CAS  Google Scholar 

  • Farooq, M., Hussain, M., Ul-Allah, S., & Siddique, K. H. (2019). Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 95–108.

    Google Scholar 

  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought stress in plants: An overview. In Plant responses to drought stress (pp. 1–33). Berlin: Springer.

  • Franks, P. J., Doheny-Adams, T. W., Britton-Harper, Z. J., & Gray, J. E. (2015). Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 207(1), 188–195.

    CAS  PubMed  Google Scholar 

  • Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L. V., et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences, 99(25), 15898–15903.

    CAS  Google Scholar 

  • Harrison, E. L., Arce Cubas, L., Gray, J. E., & Hepworth, C. (2020). The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101(4), 768–779.

    CAS  PubMed  Google Scholar 

  • Hughes, J., Hepworth, C., Dutton, C., Dunn, J. A., Hunt, L., Stephens, J., et al. (2017). Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiology, 174(2), 776–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis, P. G., & McNaughton, K. G. (1986). Stomatal control of transpiration: Scaling up from leaf to region. In Advances in ecological research (vol. 15, pp. 1–49). Academic Press.

  • Korres, N. E., Norsworthy, J. K., Burgos, N. R., & Oosterhuis, D. M. (2017). Temperature and drought impacts on rice production: An agronomic perspective regarding short-and long-term adaptation measures. Water Resources and Rural Development, 9, 12–27.

    Google Scholar 

  • Mithra, S. A., Kar, M. K., Mohapatra, T., Robin, S., Sarla, N., Sheshashayee, M., et al. (2016). DBT propelled national effort in creating mutant resource for functional genomics in rice. Current Science, 110, 543–548.

    CAS  Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

    CAS  PubMed  Google Scholar 

  • Mohapatra, T., Robin, S., Sarla, N., Sheshashayee, M., Singh, A. K., Singh, K., et al. (2014). EMS induced mutants of upland rice variety Nagina22: Generation and characterization. Proceedings of the Indian National Science Academy, 80(1), 163–172.

    Google Scholar 

  • Moreno, E. A., McKown, A. D., Guy, R. D., & Soolanayakanahally, R. Y. (2016). Leaf mass per area predicts palisade structural properties linked to mesophyll conductance in balsam poplar (Populus balsamifera L.). Botany, 94(3), 225–239.

    Google Scholar 

  • Morison, J. I. (1985). Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment, 8(6), 467–474.

    Google Scholar 

  • Nguyen, H. T., Babu, R. C., & Blum, A. (1997). Breeding for drought resistance in rice: Physiology and molecular genetics considerations. Crop Science, 37(5), 1426–1434.

    Google Scholar 

  • Perdomo, J. A., Capó-Bauçà, S., Carmo-Silva, E., & Galmés, J. (2017). Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science, 8, 490.

    PubMed  PubMed Central  Google Scholar 

  • Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 182(3), 565–588.

    PubMed  Google Scholar 

  • Praba, M. L., Cairns, J. E., Babu, R. C., & Lafitte, H. R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. Journal of Agronomy and Crop Science, 195(1), 30–46.

    Google Scholar 

  • Raju, B. R., Narayanaswamy, B. R., Mohankumar, M. V., Sumanth, K. K., Rajanna, M. P., Mohanraju, B., et al. (2014). Root traits and cellular level tolerance hold the key in maintaining higher spikelet fertility of rice under water limited conditions. Functional Plant Biology, 41, 930–939.

    PubMed  Google Scholar 

  • Rang, Z. W., Jagadish, S. V. K., Zhou, Q. M., Craufurd, P. Q., & Heuer, H. (2011). Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany, 70, 58–65.

    Google Scholar 

  • Reddy, S. H., Kambalimath, S. K., Singhal, R. K., Chikkakariyappa, M. K., Muthurajan, R., Rajanna, M. P., et al. (2019). Allele-specific analysis of single parent backcross population identifies HOX10 transcription factor as a candidate gene regulating rice root growth. Physiologia Plantarum, 166(2), 596–611.

    CAS  PubMed  Google Scholar 

  • Reddy, S. H., Singhal, R. K., DaCosta, M. V. J., Kambalimath, S. K., Rajanna, M. P., Muthurajan, R., et al. (2020). Leaf mass area determines water use efficiency through its influence on carbon gain in rice mutants. Physiologia Plantarum, 169(2), 194–213.

    CAS  PubMed  Google Scholar 

  • Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51, 447–458.

    CAS  PubMed  Google Scholar 

  • Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8(5), 1204–1213.

    Google Scholar 

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.

    CAS  PubMed  Google Scholar 

  • Sheshshayee, M. S., Bindumadhava, H., Shankar, A. G., Prasad, T. G., & Udayakumar, M. (2003). Breeding strategies to exploit water use efficiency for crop improvement. Journal of Plant Biology, 30(2), 253–268.

    Google Scholar 

  • Sheshshayee, M. S., Vijayaraghavareddy, P., Sreevathsa, R., Rajendrareddy, S., Arakesh, S., Bharti, P., et al. (2018). Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants. Frontiers in Chemistry, 6, 92.

    Google Scholar 

  • Takai, T., Kondo, M., Yano, M., & Yamamoto, T. (2010). A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice, 3(2–3), 172–180.

    Google Scholar 

  • Tanguilig, V. C., Yambao, E. B., O’toole, J. C., & De Datta, S. K. (1987). Water stress effects on leaf elongation, leaf water potential, transpiration, and nutrient uptake of rice, maize, and soybean. Plant and Soil, 103(2), 155–168.

    Google Scholar 

  • Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, Ü. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155(1), 108–116.

    CAS  PubMed  Google Scholar 

  • Vijayaraghavareddy, P., Xinyou, Y. I. N., Struik, P. C., Makarla, U., & Sreeman, S. (2020). Responses of lowland, upland and aerobic rice genotypes to water limitation during different phases. Rice Science, 27(4), 345–354.

    Google Scholar 

  • Wang, H., Sánchez-Molina, J. A., Li, M., Berenguel, M., Yang, X. T., & Bienvenido, J. F. (2017). Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, back-propagation neural networks and nonlinear autoregressive exogenous models. Agricultural Water Management, 183, 107–115.

    Google Scholar 

  • Witkowski, E. T. F., & Lamont, B. B. (1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88(4), 486–493.

    CAS  PubMed  Google Scholar 

  • Xiong, X. D., Wang, D., Liu, X., Peng, S., Huang, J., & Li, Y. (2016). Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Annals of Botany, 117(6), 963–971.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by Department of Biotechnology, New Delhi (Project No. BT/PR10787/AGIII/103/883/2014). Authors thank Prof. Udayakumar M and Prof T.G. Prasad for technical discussions and critical suggestions during the conduct of experiments. Authors also thank Dr. MS. Bobji, Assistant professor, Department of Mechanical Engineering, Indian Institute of Science, for use of scanning electron microscope facility of the department. Dr. Trilochan Mohapatra, Director General, ICAR and Secretary DARE government of India, was instrumental in initiating this program on development and characterization of rice mutants in India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niranjana Pathappa or Sheshshayee M. Sreeman.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.H., Da Costa, M.V.J., Kambalimath, S.K. et al. Relative contribution of stomatal parameters in influencing WUE among rice mutants differing in leaf mass area. Plant Physiol. Rep. 25, 483–495 (2020). https://doi.org/10.1007/s40502-020-00537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-020-00537-1

Keywords

Navigation