Skip to main content

Advertisement

Log in

Change in carbon flux (1960–2015) of the Red River (Vietnam)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Global riverine carbon concentrations and fluxes have been impacted by climate and human-induced changes for many decades. This paper aims to reconstruct the longterm carbon concentrations and carbon fluxes of the Red River, a system under the coupled pressures of environmental change and human activity. Based on (1) the relationships between particulate and dissolved organic carbon (POC, DOC) or dissolved inorganic carbon (DIC), and suspended sediments (TSS) or river water discharge and on (2) the available detailed historical records of river discharge and TSS concentration, the variations of the Red River carbon concentration and flux were estimated for the period 1960–2015. The results show that total carbon flux of the Red River averaged 2555 ± 639 kton C year−1. DIC fluxes dominated total carbon fluxes, representing 64% of total, reflecting a strong weathering process from carbonate rocks in the upstream basin. Total carbon fluxes significantly decreased from 2816 kton C year−1 during the 1960s to 1372 kton C year−1 during the 2010s and showed clear seasonal and spatial variations. Organic carbon flux decreased in both quantity and proportion of the total carbon flux from 40.9% in 1960s to 14.9% in 2010s, reflecting the important impact of dam impoundment. DIC flux was also reduced over this period potentially as a consequence of carbonate precipitation in the irrigated, agricultural land and the reduction of the Red River water discharge toward the sea. These decreases in TSS and carbon fluxes are probably partially responsible for different negatives impacts observed in the coastal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akoko E, Atekwana EA, Cruse AM, Molwalefhe L, Masamba WR (2013) River-wetland interaction and carbon cycling in a semi-arid riverine system: the Okavango Delta. Botswana Biogeochem 114:359–380

    Article  Google Scholar 

  • Aldrian E, Chen CA, Adi S, Prihartanto, Sudiana N, Nugroho SP (2008) Spatial and seasonal dynamics of riverine carbon fluxes of the Brantas catchment in East Java. J Geophys Res 113:2156–2202. https://doi.org/10.1029/2007JG000626

    Article  Google Scholar 

  • Aucour A-M, France-Lanord C, Pedoja K, Pierson-Wickmann A-C, Sheppard SMF (2006) Fluxes and sources of particulate organic carbon in the Ganga-Brahmaputra river system. Global Biogeochem Cycles. https://doi.org/10.1029/2004GB002324

    Article  Google Scholar 

  • Bianchi TS, Wysocky LA, Stewart M, Filley TR, McKee BA (2007) Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochim Cosmochim Acta 71:4425–4437

    Article  Google Scholar 

  • Bird MI, Robinson RAJ, Win ON, Maung Aye M, Lu XX, Higgitt DL, Swe A, Tun T, Lhaing Win S, Sandar Aye K, Win MMK, Hoey TB (2008) A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quatern Int 186:113–122

    Article  Google Scholar 

  • Borges J, Huh J (2007) Petrography and chemistry of the bed sediments of the Red River in China and Vietnam: Provenance and chemical weathering. Sed Geol 194:155–168

    Article  Google Scholar 

  • Botta A, Ramankutty N, Foley JA (2002) Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys Res Lett 29:33–31. https://doi.org/10.1029/2001GL013607

    Article  Google Scholar 

  • Brunet F, Dubois K, Veizer J, Ndondo GRN, Ngoupayou JRN, Boeglin JL, Probst JL (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon. Chem Geol 265:563–572

    Article  Google Scholar 

  • Cai WJ, Dai M, Wang Y, Zhai W, Huang T, Chen S, Zhang F, Chen Z, Wang Z (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24:1301–1319

    Article  Google Scholar 

  • Cai WJ, Guo X, Chen CTA, Dai M, Zhang L, Zhai W, Yin K, Harrison PJ, Wang Y (2008) A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28:1538–1549

    Article  Google Scholar 

  • Chen CTA (2000) The three gorges dam: reducing the upwelling and thus productivity in the East China Sea. Geophys Res Lett 27(3):381–383

    Article  Google Scholar 

  • Chen J, Wang F, Meybeck M, He D, Xia X, Zhang L (2005) Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Global Biogeochem Cycles 19(3):1–24 (GB3016)

    Article  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Evol Syst 13:291–314. https://doi.org/10.1146/annurev.es.13.110182.001451

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Coynel A, Seyler P, Etcheber H, Meybeck M, Orange D (2005) Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Global Biogeochem Cycles 19:GB4019. https://doi.org/10.1029/2004GB002335

    Article  Google Scholar 

  • Dang QT (2001) Participatory planning and management for flood mitigation and preparedness and trends in the Red River basin, Vietnam. In: Workshop international on Strengthening capacity in participatory planning and management for flood mitigation and preparedness in large river basin, Bangkok (Thailand), 20–23 Nov

  • Dang TH, Coynel A, Orange D, Blanc G, Etcheber H, Le LA (2010) Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Sci Total Environ 408:4654–4664

    Article  Google Scholar 

  • Dawson JJC, Soulsby C, Tetzlað D, Hrachowitz M, Dunn SM, Malcolm IA (2008) Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry 90:93–113. https://doi.org/10.1007/s10533-008-9234-3

    Article  Google Scholar 

  • Dessert C, Dupré B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  Google Scholar 

  • Do MD, Mai TN, Chu V, Ngoi T, Nghi D, Tien M, Van Weering TCE, Van den Bergh GD (2007) Sediment distribution and transport at the nearshore zone of the Red River delta, Northern Vietnam. J Asian Earth Sci 29:558–565

    Article  Google Scholar 

  • Fullen MA, Mitchel DJ, Barton AP, Hocking TJ, Liu L, Wu BZ, Yi Z, Yuan XZ (1998) Soil erosion and conservation in the Headwaters of the Yangtze River, Yunnan Province, China. In: Haigh MJ, Krecek J, Rajwar S, Kilmartin MP (eds), Headwaters: Water Resources and Soil Conservation. pp 299–306

    Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159(1–4):31–60

    Article  Google Scholar 

  • Gao J, Dai Z, Mei X, Ge Z, Wei W, Xie H, Li S (2015) Interference of natural and anthropogenic forcings on variations in continental freshwater discharge from the Red River (Vietnam) to sea. Quatern Int 380–381:133–142. https://doi.org/10.1016/j.quaint.2015.01.007

    Article  Google Scholar 

  • Geeraert N, Omengo FO, Tamooh F, Marwick TR, Borges AV, Govers G, Bouillon S (2018) Seasonal and inter-annual variations in carbon fluxes in a tropical river system (Tana River, Kenya). Aquat Sci 80:19. https://doi.org/10.1007/s00027-018-0573-4

    Article  Google Scholar 

  • General Statistics Office of Vietnam (2010) The 2009 Vietnam Population and Housing census: Completed results. Statistical Publishing House, Hanoi, 893 pp

    Google Scholar 

  • Ha VK, Vu TMH (2012) Analysis of the effects of the reservoirs in the upstream Chinese section to the lower section flow of the Da and Thao Rivers. J Water Resour Environ Eng 38:3–8

    Google Scholar 

  • Haas AF, Nelson C, Kelly L, Carlson C (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. Plos One 6(11):e27973. https://doi.org/10.1371/journal.pone.0027973.pmid:22125645

    Article  Google Scholar 

  • Helie JF, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint. Chem Geol 186:117–138

    Article  Google Scholar 

  • Hu B, Li J, Bi N, Wang H, Wei H, Zhao J, Xie L, Zou L, Cui R, Li S, Liu M, Li G (2015) Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River). Earth Surf Process Landf. https://doi.org/10.1002/esp.3702

    Article  Google Scholar 

  • Huang TH, Fu YH, Pan PY, Chen CTA (2012) Fluvial carbon fluxes in tropical rivers. Curr Opin Environ Sust 4:162–169

    Article  Google Scholar 

  • IMRR (2010) WP3report, integrated and sustainable water management of Red-Thai Binh Rivers System in changing climate (IMRR Project) funded by Italian Ministry of Foreign Affairs. http://baobab.elet.polimi.it/iwrmwiki/IMRR:WP3.1.Introduction/en

  • Janeau JL, Gillard LC, Grellier S, Jouquet P, Le TPQ, Luu TNM, Ngo QA, Orange D, Pham DR, Tran DT, Tran SH, Trinh AD, Valentin C, Rochelle-Newall E (2014a) Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agric Water Manag 146:314–323. https://doi.org/10.1016/j.agwat.2014.09.006

    Article  Google Scholar 

  • Janeau J-L, Gillard L-C, Grellier S, Jouquet P, Le TPQ, Luu TNM, Ngo QA, Orange D, Pham DR, Tran DT, Tran HS, Trinh AD, Valentin C (2014b) Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam. Agric Water Manag 146:314–323. https://doi.org/10.1016/j.agwat.2014.09.006

    Article  Google Scholar 

  • Ji H, Li C, Ding H, Gao Y (2016) Source and flux of POC in a karstic area in the Changjiang River watershed: impacts of reservoirs and extreme. Biogeosciences 13:3687–3699. https://doi.org/10.5194/bg-13-3687-2016

    Article  Google Scholar 

  • Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119–125. http://www.int-res.com/abstracts/meps/v314/p119-125/

    Article  Google Scholar 

  • Kummu M, Varis O (2007) Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 85(3–4):275–293

    Article  Google Scholar 

  • Kuntz NM, Kline DI, Sandin SA, Rohwer F (2005) Pathologies and mortality rates caused by organic carbon and nutrient stressors in three Caribbean coral species. Mar Ecol Prog Ser 294:173–180. http://www.int-res.com/abstracts/meps/v294/p173-180/

    Article  Google Scholar 

  • Lai TV (2016) Study on water resources in the Red River Delta in under climate change pressure. Thesis, University of Science and Technology (GUST), p 208

  • Latrubesse EM, Arima EY, Dunne T, Park E, Baker VR et al (2017) Damming the rivers of the Amazon basin. Nature. https://doi.org/10.1038/nature22333

    Article  Google Scholar 

  • Le TPQ, Garnier J, Billen G, Thery S, Chau VM (2007) The changing flow regime and sediment load of the Red River, Viet Nam. J Hydrol 334:199–214. https://doi.org/10.1016/j.jhydrol.2006.10.020

    Article  Google Scholar 

  • Le TPQ, Billen G, Garnier J, Chau VM (2015a) Long-term biogeochemical functioning of the Red River (Vietnam): past and present situations. Reg Environ Change 15:329–339

    Article  Google Scholar 

  • Le TPQ, Dao VN, Mai TA, Nguyen TBN, Vu DA, Duong TT, Ho TC, Phung TXB, Tran TBN (2015b) Transport of dissolved inorganic carbon (DIC) in the Red River system (Vietnam). Vietnam J Sci Technol 53(3A):151–156

    Google Scholar 

  • Le TPQ, Dao VN, Rochelle-Newall E, Garnier J, Lu XX, Billen G, Duong TT, Ho TC, Etcheber H, Nguyen TMH, Nguyen TBN, Nguyen BT, Le ND, Pham QL (2017) Total organic carbon fluxes of the Red River system (Vietnam). Earth Surf Process Landf 42(9):1329–1341. https://doi.org/10.1002/esp.4107

    Article  Google Scholar 

  • Li S, Bush RT (2015) Changing fluxes of carbon and other solutes from the Mekong River. Sci Rep 5:16005. https://doi.org/10.1038/srep16005

    Article  Google Scholar 

  • Li S, Lu XX, He M, Zhou Y, Bei R, Li L, Ziegler AD (2011) Major element chemistry in the upper Yangtze River: a case study of the Longchuanjiang River. Geomorphology 129:29–42

    Article  Google Scholar 

  • Liu J, Xue Z, Ross K, Wang HJ, Yang ZS, Li AC, Gao S (2009) Fate of sediments delivered to the sea by Asian large rivers: Long-distance transport and formation of remote alongshore clinothems. Sedim Rec 7(4):4–9

    Article  Google Scholar 

  • Liu J, Song X, Wang Z, Yang L, Sun Z, Wang W (2015) Variations of carbon transport in the Yellow River, China. Hydrol Res 46(5):746–762. https://doi.org/10.2166/nh.2014.077

    Article  Google Scholar 

  • Lloret E, Dessert C, Gaillardet J, Alberic P, Crispi O, Chaduteau C, Benedetti MF (2011) Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem Geol 280:65–78. https://doi.org/10.1016/j.chemgeo.2010.10.016

    Article  Google Scholar 

  • Loh PS, Chen CTA, Anshari GZ, Wang JT, Lou JY, Wang SL (2012) A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia). J Asian Earth Sci 43:118–129

    Article  Google Scholar 

  • Lu XX, Siew RY (2006) Water discharge and sediment flux changes in the Lower Mekong River. Hydrol Earth Syst Sci 2:2287–2325

    Article  Google Scholar 

  • Lu XX, Oeurng C, Le TPQ, Duong TT (2015) Sediment budget of the lower Red River as affected by dam construction. Geomorphology 248:125–133. https://doi.org/10.1016/j.geomorph.2015.06.044

    Article  Google Scholar 

  • Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41

    Article  Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Probst JL (2011) ISLSCP II global river fluxes of carbon and sediments to the oceans. In: Hall FG et al (ed) ISLSCP Initiative II Collection, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee. https://doi.org/10.3334/ORNLDAAC/1028. Data set. http://daac.ornl.gov/.

  • Luu TNM (2010) Water quality and nutrient transfers in the continuum from the upstream Red River basin to the Delta: budget and modelling, PhD thesis, University of Pierre and Marie Curie, p 199

  • Maavara T, Lauerwald R, Regnier P, Van Cappellen P (2017) Global perturbation of organic carbon cycling by river damming. Nat Commun 8:15347. https://doi.org/10.1038/ncomms15347

    Article  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541. https://doi.org/10.1038/nature03880

    Article  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci 282:401–405

    Article  Google Scholar 

  • Meybeck M, Vorosmarty C (1999) Global transfer of carbon by rivers. Global Change Newsl 37:41974 (International Geosphere Biosphere Programme, Stockholm, Sweden)

    Google Scholar 

  • Meybeck M, Roussennac S, Dürr H, Vogler J (2005) Lateral carbon transport in freshwaters. Concerted Action CarboEurope-GHG, CarboEurope Cluster Report 55 pp

  • Meyer FW, Schubert N, Diele K, Teichberg M, Wild C, Enríquez S (2016) Effect of inorganic and organic carbon enrichments (DIC and DOC) on the photosynthesis and calcification rates of two calcifying green algae from a Caribbean Reef Lagoon. Plos One 11(8):e0160268. https://doi.org/10.1371/journal.pone.0160268

    Article  Google Scholar 

  • Miao C, Ni J, Borthwick AGL, Yang L (2011) A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global Planet Change 76:196–205

    Article  Google Scholar 

  • Milliman DJ, Farnsworth LK (2011) River discharge to the coastal ocean: a global synthesis. Cambridge Univ. Press, Cambridge, p 392. ISBN: 978-0-521-87987-3

  • Ministry of Agriculture and Rural Development (2009) Research application on the use of MIKE21 model to assess, predict and prevent river bank erosion (north, central and south Vietnam), Technical report of the project 2006–2008 of the Ministry of Agriculture and Rural Development, Hanoi, Vietnam

  • MONRE (1960–2015) vietnamese ministry of environment and natural resources. Report annual on hydrological observation in Vietnam

  • Moon S, Huh Y (2006) Chemical weathering in the Hong (Red) River Basin: rates of silicate weathering and their controlling factors. In: Proceedings of the 4th international symposium of IGCP-476. September 3–6, 2006, Busan, Korea, p 73

  • Moon S, Huh Y, Qin J, Nguyen VP (2007) Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2006.12.004

    Article  Google Scholar 

  • Moore S, Gauci V, Evans CD, Page SE (2011) Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 8:901–909

    Article  Google Scholar 

  • Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H (2003) Characteristics of organic matter in the mixing zone of the Rio Negro and Rio Solimoes of the Amazon River. Hydrol Process 17:1393–1404

    Article  Google Scholar 

  • MOSTE (1997) Vietnamese General Statistics Officer, Ministry of Science, Technology and Environment of Vietnam. General Statistics Editor, Hanoi

    Google Scholar 

  • Ngo TT, Tran BN (1998) Erosion of Da and Hong rivers caused by the HoaBinh reservoir operation. In: Proceedings of international conference on economic development and environmental protection of the Yuan-Red River watershed, Hanoi, 4–5 March

  • Ngo TT, Trinh TP, Luong HD, Kim JH (2014) Regulation effects of reservoir system on flow regime in Red River downstream. In: Hydrology in a changing world: environmental and human dimensions 1, Poster Proceedings of FRIEND-Water 2014, Hanoi, Vietnam, February 2014

  • Nguyen VD, Nguyen HK, Nguyen MS, Nguyen VH, Huntjens P (2007) Integrated water resource management in the Red River Basin – problems and cooperation opportunity. In: CAIWA International Conference on Adaptive and Integrated Water Management, November 12–15, Basel, Switzerland. http://www.newater.uniosnabrueck.de/caiwa/data/papers%20session/D1/full%20paper_CAIWA%20workshop_5%5B1%5D.pdf

  • Ni HG, Lu FH, Luo XL, Tian HY, Zeng EY (2008) Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean of South China. Mar Pollut Bull 56:1150–1157

    Article  Google Scholar 

  • Pham QS (1998) Fundamental characteristics of the Red River bed evolution. In: Proceedings of international conference on economic development and environmental protection of the Yuan-Red River watershed, Hanoi, 4–5 March

  • Pham HV (2015) Using ENSO information to improve the operation of the HoaBinh reservoir, Vietnam. Master of Science in Environmental and Geomatic Engineering, Politecnico Di Milano, p 70. https://www.politesi.polimi.it/bitstream/10589/112822/3/2015_10_Pham.pdf

  • Qu B, Sillanpää M, Kang S, Yan F, Li Z, Zhang H, Li C (2017) Export of dissolved carbonaceous and nitrogenous substances in rivers of the “Water Tower of Asia”. J Environ Sci. https://doi.org/10.1016/j.jes.2017.04.001

    Article  Google Scholar 

  • Quach X (2011a) Assessing and optimizing the operation of the HoaBinh reservoir, 14 Vietnam, by multi-objective optimal control techniques. PhD thesis, Politecnico 15 di Milano

  • Quach X (2011b) “Assessing and optimizing the operation of the HoaBinh reservoir, Vietnam, by multi-objective optimal control techniques.” PhD thesis, Politecnico di Milano. (cit. on pp. 2, 20, 23, 24, 33–35)

  • Ran L, Lu XX, Sun H, Han J, Li R (2013) Spatial and seasonal variability of organic carbon transport in the Yellow River, China. J Hydrol 498:76–88

    Article  Google Scholar 

  • Ran L, Lu XX, Richey JE, Sun H, Han J, Yu R, Liao S, Yi Q (2015) Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences 12:921–932

    Article  Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452. https://doi.org/10.1038/nature06505

    Article  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson A (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Article  Google Scholar 

  • Shi G, Peng C, Wang M, Shi S, Yang Y, Chu J, Zhang J, Lin G, Shen Y, Zhu Q (2016) The spatial and temporal distribution of dissolved organic carbon exported from three Chinese rivers to the China Sea. PLoS One 11(10):e0165039. https://doi.org/10.1371/journal.pone.0165039

    Article  Google Scholar 

  • Singh SK, Sarin MM, France-Lanord C (2005) Chemical erosion in the eastern Himalaya: major ion composition of the Brahmaputra and δ 13C of dissolved inorganic carbon. Geochim Cosmochem Acta 69:3573–3588

    Article  Google Scholar 

  • Spitzy A, Leenheer J (1991) Dissolved organic carbon in rivers. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. SCOPE/UNEP. Wiley, Chichester, pp 213e232

    Google Scholar 

  • Suchet AP (1995) Cycle du carbone, erosion chimique des continents et transferts vers les oceans. Sciences Géologiques 97:156

    Google Scholar 

  • Suchet PA, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/ soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cycles 17:1038

    Google Scholar 

  • Sun HG, Han J, Lu XX, Zhang SR, Li D (2010) An assessment of the riverine carbon flux of the Xijiang River during the past 50 years. Quatern Int 226:38–43

    Article  Google Scholar 

  • Syvitski JPM, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115:1–19

    Article  Google Scholar 

  • Tamooh F, Meysman FJR, Borges AV, Marwick TR, Meersche KVD, Dehairs F, Merckx R, Bouillon S (2014) Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya). J Geophys Res Biogeosci 119:1340–1353. https://doi.org/10.1002/2013JG002358

    Article  Google Scholar 

  • To TN (2000) Flood control planning for the Red River Basin. In: International European-Asian workshop: ecosystem and flood 2000, Hanoi, Vietnam, June 27–29

  • Van Maren DS, Hoekstra P (2004) Seasonal variation of hydro-dynamics and sediment dynamics in a shallows subtropical estuary: the Ba Lat River, Vietnam. Estuar Coast Shelf Sci 60:529–540

    Article  Google Scholar 

  • Vinh VD, Ouillon S, Thanh TD, Chu LV (2014) Impact of the HoaBinh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol Earth Syst Sci 18:3987–4005

    Article  Google Scholar 

  • Vorosmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39:169–190

    Article  Google Scholar 

  • Wang H, Yang Z, Saito Y, Liu JP, Sun X, Wang Y (2007) Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2005): impacts of climate change and human activities. Global Planet Change 57(3–4):331–354

    Article  Google Scholar 

  • Wang X, Ma H, Li R, Song Z, Wu J (2012) Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers—the Yellow River and Changjiang (Yangtze) River. Global Biogeochemical Cycles 26 GB2025. https://doi.org/10.1029/2011GB004130

    Article  Google Scholar 

  • Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR, Spencer RGM, Holmes RM (2013) Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett 40(3):511–516. https://doi.org/10.1002/grl.50160

    Article  Google Scholar 

  • Worrall F, Burt T, Shedden R (2003) Long term records of riverine dissolved organic matter. Biogeochemistry 64:165–178

    Article  Google Scholar 

  • Wu Y, Zhang J, Liu SM, Zhang ZF, Yao QZ, Hong GH, Cooper L (2007) Sources and distribution of carbon within the Yangtze River system. Estuar Coast Shelf Sci 71:13–25

    Article  Google Scholar 

  • Yang S, Wang H, Saito Y, Miliman JD, Xu K, Qiao S, Shi G (2006) Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour Res 42:W04407. https://doi.org/10.1029/2005WR003970

    Article  Google Scholar 

  • Zhang Q, Xu CY, Becker S, Jiang T (2006) Sediment and runoff changes in the Yangtze River basin during past 50 years. J Hydrol 331(3–4):511–523

    Article  Google Scholar 

  • Zhang SR, Lu XX, Higgitt DL, Chen CTA, Sun HG, Han JT (2007) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. J Geophys Res 112:1–17

    Google Scholar 

  • Zhang SR, Lu XX, Sun HG, Han J, Higgitt DL (2009) Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci Total Environ 407:815–825

    Article  Google Scholar 

  • Zhang LJ, Wang L, Cai WJ, Liu DM, Yu ZG (2013) Impact of human activities on organic carbon transport in the Yellow River. Biogeosciences 10:2513–2524. https://doi.org/10.5194/bg-10-2513-2013

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports of the Vietnam’s National Foundation for Science and Technology Development (NAFOSTED-Vietnam, 105.09-2012.10 project), the Asia-Pacific Network for Global Change Research (APN) (ARCP2014-03CMY-Quynh/ARCP2013-06CMY-Quynh/ARCP2012-11NMY-Quynh project) and the International foundation for Science (IFS) W4210/2 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Phuong Quynh Le.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.P.Q., Le, N.D., Dao, V.N. et al. Change in carbon flux (1960–2015) of the Red River (Vietnam). Environ Earth Sci 77, 658 (2018). https://doi.org/10.1007/s12665-018-7851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7851-2

Keywords

Navigation