Skip to main content
Log in

CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In terms of photoelectrochemical (PEC) hydrogen evolution, substantial challenge still remains regarding the controllable fabrication of quantum dots (QDs)-sensitized photocathodes with enhanced visible-light absorption, efficient charge carrier separation, and directional migration at the electrode interface. In this work, the CdTe/CdSe QDs-sensitized photocathodes were delicately constructed on p-type NiO-coated indium tin oxide (ITO) electrodes by spin-coating approach. The resulting co-sensitized photocathode exhibits a favorable pseudo-Type II energetic band alignment that combines the advantages of strong light absorption of constituent QDs as well as the effective and oriented charge separation and migration. Upon green LED light illumination, the photogenerated electrons could be effectively transferred to a tetra-nickel-substituted polyoxometalate catalyst for hydrogen production while photogenerated holes will be scavenged at the NiO/ITO electrode. Under minimally optimized conditions, the pseudo-Type II CdTe/CdSe-sensitized photocathode yields a photocurrent density of over 100 µA/cm2 and a Faradaic efficiency of ∼ 100%, which is among one of the most efficient QDs-based photocathode systems coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem., Int. Ed. 2007, 46, 52–66.

    Article  CAS  Google Scholar 

  2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  CAS  Google Scholar 

  3. Lv, H. J.; Geletii, Y. V.; Zhao, C. C.; Vickers, J. W.; Zhu, G. B.; Luo, Z.; Song, J.; Lian, T. Q.; Musaev, D. G.; Hill, C. L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589.

    Article  CAS  Google Scholar 

  4. Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Recent advances in sensitized photocathodes: From molecular dyes to semiconducting quantum dots. Adv. Sci. 2018, 5, 1700684.

    Article  Google Scholar 

  5. Yang, H. B.; Miao, J. W.; Hung, S. F.; Huo, F. W.; Chen, H. M.; Liu, B. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting. ACS Nano 2014, 8, 10403–10413.

    Article  CAS  Google Scholar 

  6. Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg, R. Photogeneration of hydrogen from water using cdse nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.

    Article  CAS  Google Scholar 

  7. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    Article  CAS  Google Scholar 

  8. Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

    Article  CAS  Google Scholar 

  9. Han, Z. J.; Eisenberg, R. Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537–2544.

    Article  CAS  Google Scholar 

  10. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  Google Scholar 

  11. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  12. Li, L.; Duan, L. L.; Wen, F. Y.; Li, C.; Wang, M.; Hagfeldt, A.; Sun, L. C. Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun. 2012, 48, 988–990.

    Article  CAS  Google Scholar 

  13. Fan, K.; Li, F. S.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. C. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Phys. Chem. Chem. Phys. 2014, 16, 25234–25240.

    Article  CAS  Google Scholar 

  14. Tong, L.; Iwase, A.; Nattestad, A.; Bach, U.; Weidelener, M.; Götz, G.; Mishra, A.; Bäuerle, P.; Amal, R.; Wallace, G. G. et al. Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy Environ. Sci. 2012, 5, 9472–9475.

    Article  CAS  Google Scholar 

  15. Ji, Z. Q.; He, M. F.; Huang, Z. J.; Ozkan, U.; Wu, Y. Y. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. J. Am. Chem. Soc. 2013, 135, 11696–11699.

    Article  CAS  Google Scholar 

  16. Li, F. S.; Fan, K.; Xu, B.; Gabrielsson, E.; Daniel, Q.; Li, L.; Sun, L. C. Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J. Am. Chem. Soc. 2015, 137, 9153–9159.

    Article  CAS  Google Scholar 

  17. Massin, J.; Bräutigam, M.; Kaeffer, N.; Queyriaux, N.; Field, M. J.; Schacher, F. H.; Popp, J.; Chavarot-Kerlidou, M.; Dietzek, B.; Artero, V. Dye-sensitized PS-b-P2VP-templated nickel oxide films for photoelectrochemical applications. Interface Focus 2015, 5, 20140083.

    Article  Google Scholar 

  18. Dong, Y. M.; Wu, R. X.; Jiang, P. P.; Wang, G. L.; Chen, Y. M.; Wu, X. M.; Zhang, C. Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustainable Chem. Eng. 2015, 3, 2429–2434.

    Article  CAS  Google Scholar 

  19. Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T. Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C 2008, 112, 16134–16139.

    Article  CAS  Google Scholar 

  20. Kang, S. H.; Zhu, K.; Neale, N. R.; Frank, A. J. Hole transport in sensitized CdS-NiO nanoparticle photocathodes. Chem. Commun. 2011, 47, 10419–10421.

    Article  CAS  Google Scholar 

  21. Wang, F.; Wang, W. G.; Wang, X. J.; Wang, H. Y.; Tung, C. H.; Wu, L. Z. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 3193–3197.

    Article  CAS  Google Scholar 

  22. Li, Z. J.; Li, X. B.; Wang, J. J.; Yu, S.; Li, C. B.; Tung, C. H.; Wu, L. Z. A robust “artificial catalyst” in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. Energy Environ. Sci. 2013, 6, 465–469.

    Article  CAS  Google Scholar 

  23. Lv, H. J.; Ruberu, T. P.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R. Catalytic light-driven generation of hydrogen from water by iron dithiolene complexes. J. Am. Chem. Soc. 2016, 138, 11654–11663.

    Article  CAS  Google Scholar 

  24. Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

    Article  CAS  Google Scholar 

  25. Park, M. A.; Lee, S. Y.; Kim, J. H.; Kang, S. H.; Kim, H.; Choi, C. J.; Ahn, K. S. Enhanced photoelectrochemical response of CdSe quantum dot-sensitized p-type NiO photocathodes. Phys. Status Solidi A 2014, 211, 1868–1872.

    Article  CAS  Google Scholar 

  26. Lv, H. J.; Wang, C. C.; Li, G. C.; Burke, R.; Krauss, T. D.; Gao, Y. L.; Eisenberg, R. Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proc. Natl. Acad. Sci. USA 2017, 114, 11297–11302.

    Article  CAS  Google Scholar 

  27. Ruberu, T. P. A.; Dong, Y. M.; Das, A.; Eisenberg, R. Photoelectrochemical generation of hydrogen from water using a CdSe quantum dot-sensitized photocathode. ACS Catal. 2015, 5, 2255–2259.

    Article  CAS  Google Scholar 

  28. Na, Y.; Hu, B.; Yang, Q. L.; Liu, J.; Zhou, L.; Fan, R. Q.; Yang, Y. L. CdS quantum dot sensitized P-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting. Chin. Chem. Lett. 2015, 26, 141–144.

    Article  CAS  Google Scholar 

  29. Su, X.; Chen, Y.; Ren, L.; He, Y.; Yin, X. S.; Liu, Y.; Yang, W. Z. Cobalt catalyst grafted CdSeTe quantum dots on porous nio as photocathode for H2 evolution under visible light. ACS Sustainable Chem. Eng. 2019, 7, 11166–11174.

    Article  CAS  Google Scholar 

  30. Wu, H. L.; Li, X. B.; Wang, Y.; Zhou, S.; Chen, Y. J.; He, X. J.; Tung, C. H.; Wu, L. Z. Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. J. Mater. Chem. A 2019, 7, 26098–26104.

    Article  CAS  Google Scholar 

  31. Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

    Article  CAS  Google Scholar 

  32. Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X. Y. Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. J. Phys. Chem. C 2008, 112, 8419–8423.

    Article  CAS  Google Scholar 

  33. Ruland, A.; Schulz-Drost, C.; Sgobba, V.; Guldi, D. M. Enhancing photocurrent efficiencies by resonance energy transfer in cdte quantum dot multilayers: Towards rainbow solar cells. Adv. Mater. 2011, 23, 4573–4577.

    Article  CAS  Google Scholar 

  34. Lv, H. J.; Guo, W. W.; Wu, K. F.; Chen, Z. Y.; Bacsa, J.; Musaev, D. G.; Geletii, Y. V.; Lauinger, S. M.; Lian, T. Q.; Hill, C. L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018.

    Article  CAS  Google Scholar 

  35. Guo, W. W.; Lv, H. J.; Chen, Z. Y.; Sullivan, K. P.; Lauinger, S. M.; Chi, Y. N.; Sumliner, J. M.; Lian, T. Q.; Hill, C. L. Self-assembly of polyoxometalates, Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution. J. Mater. Chem. A 2016, 4, 5952–5957.

    Article  CAS  Google Scholar 

  36. Lv, H. J.; Chi, Y. N.; van Leusen, J.; Kögerler, P.; Chen, Z. Y.; Bacsa, J.; Geletii, Y. V.; Guo, W. W.; Lian, T. Q.; Hill, C. L. [{Ni4(OH)3AsO4}4(B-α-PW9O34)4]28 A new polyoxometalate structural family with catalytic hydrogen evolution activity. Chem.—Eur. J. 2015, 21, 17363–17370.

    Article  CAS  Google Scholar 

  37. Zhang, G. H.; Yang, W. B.; Wu, W. M.; Wu, X. Y.; Zhang, L.; Kuang, X. F.; Wang, S. S.; Lu, C. Z. A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. J. Catal. 2019, 369, 54–59.

    Article  CAS  Google Scholar 

  38. von Allmen, K.; Moré, R.; Müller, R.; Soriano-López, J.; Linden, A.; Patzke, G. R. Nickel-containing keggin-type polyoxometalates as hydrogen evolution catalysts: Photochemical structure-activity relationships. ChemPlusChem 2015, 80, 1389–1398.

    Article  CAS  Google Scholar 

  39. Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M. H.; Tran, T. T.; Pino, T.; Marrot, J.; Rivière, E.; Hendon, C. H.; Oms, O. et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166–4169.

    Article  CAS  Google Scholar 

  40. Han, X. B.; Qin, C.; Wang, X. L.; Tan, Y. Z.; Zhao, X. J.; Wang, E. B. Bio-inspired assembly of cubane-adjustable polyoxometalate-based high-nuclear nickel clusters for visible light-driven hydrogen evolution. Appl. Catal. B Environ. 2017, 211, 349–356.

    Article  CAS  Google Scholar 

  41. Cui, T. T.; Qin, L.; Fu, F. Y.; Xin, X.; Li, H. J.; Fang, X. K.; Lv, H. J. Pentadecanuclear Fe-containing polyoxometalate catalyst for visible-light-driven generation of hydrogen. Inorg. Chem. 2021, 60, 4124–4132.

    Article  CAS  Google Scholar 

  42. Lv, H. J.; Gao, Y. Z.; Guo, W. W.; Lauinger, S. M.; Chi, Y. N.; Bacsa, J.; Sullivan, K. P.; Wieliczko, M.; Musaev, D. G.; Hill, C. L. Cu-based polyoxometalate catalyst for efficient catalytic hydrogen evolution. Inorg. Chem. 2016, 55, 6750–6758.

    Article  CAS  Google Scholar 

  43. Qin, L.; Zhao, C. Y.; Yao, L. Y.; Dou, H. B.; Zhang, M.; Xie, J.; Weng, T. C.; Lv, H. J.; Yang, G. Y. Efficient photogeneration of hydrogen boosted by long-lived dye-modified Ir(III) photosensitizers and polyoxometalate catalyst. CCS Chem., in press, DOI: https://doi.org/10.31635/ccschem.021.202000741.

  44. Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by 4PW9 and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem., in press, DOI: https://doi.org/10.31635/ccschem.020.202000403.

  45. Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.

    Article  CAS  Google Scholar 

  46. Bu, H. B.; Kikunaga, H.; Shimura, K.; Takahasi, K.; Taniguchi, T.; Kim, D. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties. Phys. Chem. Chem. Phys. 2013, 15, 2903–2911.

    Article  CAS  Google Scholar 

  47. Zhang, H.; Zhou, Z.; Yang, B.; Gao, M. Y. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 2003, 107, 8–13.

    Article  CAS  Google Scholar 

  48. Abdellah, M.; Zhang, S. H.; Wang, M.; Hammarström, L. Competitive hole transfer from CdSe quantum dots to thiol ligands in CdSe-cobaloxime sensitized NiO films used as photocathodes for H2 evolution. ACS Energy Lett. 2017, 2, 2576–2580.

    Article  CAS  Google Scholar 

  49. Jiao, L.; Dong, Y. Y.; Xin, X.; Qin, L.; Lv, H. J. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl. Catal. B Environ. 2021, 291, 120091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871025 and 21831001), the Recruitment Program of Global Experts (Young Talents), and BIT Excellent Young Scholars Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Dong or Hongjin Lv.

Electronic Supplementary Material

12274_2021_3663_MOESM1_ESM.pdf

CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, M., Dong, Y. et al. CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen. Nano Res. 15, 1347–1354 (2022). https://doi.org/10.1007/s12274-021-3663-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3663-x

Keywords

Navigation