Skip to main content
Log in

Biogenic Nanoparticles from Schwanniomyces occidentalis NCIM 3459: Mechanistic Aspects and Catalytic Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

When cells of Schwanniomyces occidentalis NCIM 3459 were incubated with 1 mM tetrachloroauric acid (HAuCl4) or silver nitrate (AgNO3), cell-associated nanoparticles were obtained. Their presence was confirmed by scanning electron microscope observations. The cell-free supernatant (CFS) of the yeast mediated the synthesis of gold nanoparticles. On account of the difficulties associated with the use of cell-bound nanoparticles, further work was restricted to extracellular nanoparticles. It was hypothesized that the CFS contained thermostable biomolecule(s) that mediated metal reduction reactions. Extraction of the CFS with chloroform/methanol (2:1) and subsequent separation by preparative thin layer chromatography led to the activity-guided purification of a glycolipid. The glycolipid was hydrolyzed and the glycone (glucose) and aglycone components (palmitic acid and oleic acid) were identified by gas chromatography-mass spectrometry. The purified glycolipid mediated the synthesis of gold and silver nanoparticles that were characterized by using an X-ray diffractometer and transmission electron microscope (TEM). The extracellular nanoparticles displayed catalytic activities and reduced 4-nitroaniline to benzene-1,4-diamine. This paper thus highlights nanoparticle synthesis by a hitherto unreported yeast culture, identifies the biomolecules involved in the process, and describes a potential application of the nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., Azam, A., & Owais, M. (2011). Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 6, 2305–2319.

    CAS  Google Scholar 

  2. Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739–2779.

    Article  CAS  Google Scholar 

  3. Wang, W., Pang, Y., Yan, J., Wang, G., Suo, H., Zhao, C., & Xing, S. (2012). Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bulletin, 45, 91–98.

    Article  Google Scholar 

  4. Rodrigues, A. G., Ping, L. Y., Marcato, P. D., Alves, O. L., Silva, M. C. P., Ruiz, R. C., Melo, I. S., Tasic, L., & De Souza, A. O. (2013). Biogenic antimicrobial silver nanoparticles produced by fungi. Applied Microbiology and Biotechnology, 97, 775–782.

    Article  CAS  Google Scholar 

  5. Golinska, P., Wypij, M., Ingle, A. P., Gupta, I., Dahm, H., & Rai, M. (2014). Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicities. Applied Microbiology and Biotechnology, 98, 8083–8097.

    Article  CAS  Google Scholar 

  6. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99, 4579–4593.

    Article  CAS  Google Scholar 

  7. K, S., Vaghasiya, J. V., Soni, S. S., Patel, J., Patel, R., Kumari, M., Jasmani, F., & Selvaraj, K. (2015). Microbial selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Applied Biochemistry and Biotechnology, 177, 1386–1393.

    Article  Google Scholar 

  8. Moorthi, P. V., Balasubramanian, C., & Mohan, S. (2015). An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Applied Biochemistry and Biotechnology, 175, 135–140.

    Article  CAS  Google Scholar 

  9. Park, T. J., Lee, K. G., & Lee, S. Y. (2016). Advances in microbial biosynthesis of metal nanoparticles. Appl Microbiol Biotechnol, 100, 521–534.

  10. Li, Z., & Du, Y. (2003). Biomimic synthesis of CdS nanoparticles with enhanced luminescence. Materials Letters, 57, 2480–2484.

    Article  CAS  Google Scholar 

  11. Jha, A. K., Prasad, K., & Prasad, K. (2009). A green low cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal, 43, 303–306.

    Article  CAS  Google Scholar 

  12. Jha, A. K., Prasad, K., & Kulkarni, A. R. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surfaces B, 71, 226–229.

    Article  CAS  Google Scholar 

  13. Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 78, 583–588.

    Article  CAS  Google Scholar 

  14. Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39, 1.

    Article  Google Scholar 

  15. Subramanian, M., Alikunhi, N. M., & Kandasamy, K. (2010). In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Advanced Science Letters, 3, 428–433.

    Article  CAS  Google Scholar 

  16. Kumar, G., Mamidyala, S., Das, B., Sridhar, B., Sarala Devi, V., & Karuna, M. (2010). Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. Biotechnology, 20, 1061–1068.

    CAS  Google Scholar 

  17. Zinjarde, S., Apte, M., Mohite, P., & Kumar, A. R. (2014). Yarrowia lipolytica and pollutants: interactions and applications. Biotechnology Advances, 32, 920–933.

    Article  CAS  Google Scholar 

  18. Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2002). Microbial synthesis of semiconductor PbS nanocrystallites. Advanced Materials, 14, 815–818.

    Article  CAS  Google Scholar 

  19. Seshadri, S., Saranya, K., & Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology Progress, 27, 1464–1469.

    Article  CAS  Google Scholar 

  20. Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 90, 1609–1624.

    Article  Google Scholar 

  21. Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A. P., & Rai, M. (2015). Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, 37, 2099–2120.

    Article  CAS  Google Scholar 

  22. Hosseini-Abari, A., Emtiazi, G., Lee, S. H., Kim, B. G., & Kim, J. H. (2014). Biosynthesis of silver nanoparticles by Bacillus stratosphericus spores and the role of Dipicolinic Acid in this process. Applied Biochemistry and Biotechnology, 174, 270–282.

    Article  CAS  Google Scholar 

  23. Mashwani, Z. R., Khan, T., Khan, M. A., & Nadhman, A. (2015). Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Applied Microbiology and Biotechnology. doi:10.1007/s00253-015-6987-1.

    Google Scholar 

  24. Apte, M., Girme, G., Nair, R., Bankar, A., Kumar, A. R., & Zinjarde, S. (2013). Melanin mediated synthesis of gold nanoparticles by Yarrowia lipolytica. Materials Letters, 95, 149–152.

    Article  CAS  Google Scholar 

  25. Dohmen, R. J., & Hollenberg, C. P. (1996). Schwanniomyces occidentalis. In K. Wolf (Ed.), Non-conventional yeasts in biotechnology (pp. 117–137). New York: Springer.

    Chapter  Google Scholar 

  26. Abarca, D., Fernández-Lobato, M., del Pozo, L., & Jiménez, A. (1991). Isolation of a new gene (SW A2) encoding an α-amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Letters, 279, 41–44.

    Article  CAS  Google Scholar 

  27. Álvaro-Benito, M., Polo, A., González, B., Fernández-Lobato, M., & Sanz-Aparicio, J. (2010). Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. Journal of Biological Chemistry, 285, 13930–13941.

    Article  Google Scholar 

  28. Horn, C. H., Du Preez, J. C., & Kilian, S. G. (1992). Fermentation of grain sorghum starch by co-cultivation of Schwanniomyces occidentalis and Saccharomyces cerevisiae. Bioresource Technology, 42, 27–31.

    Article  CAS  Google Scholar 

  29. Anupama, & Ravindra, P. (2000). Value-added food: single cell protein. Biotechnology Advances, 8, 459–479.

    Article  Google Scholar 

  30. Fedorovych, D., Kszeminska, H., Babjak, L., Kaszycki, P., & Kołoczek, H. (2001). Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast. BioMetals, 14, 23–31.

    Article  CAS  Google Scholar 

  31. Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  32. Peng, F., Liu, Z., Wang, L., & Shao, Z. (2007). An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. Journal of Applied Microbiology, 102, 1603–1611.

    Article  CAS  Google Scholar 

  33. Sprott, G. D., Larocque, S., Cadotte, N., Dicaire, C. J., McGee, M., & Brisson, J. R. (2003). Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii. Biochimie Biophysical Acta, 1633, 179–188.

    Article  CAS  Google Scholar 

  34. Sweeley, C., & Walker, B. (1964). Determination of carbohydrates in glycolipids and gangliosides by gas chromatography. Analytical Chemistry, 36, 1461–1469.

    Article  CAS  Google Scholar 

  35. Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., & Kulkarni, S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters, 63, 1231–1234.

    Article  CAS  Google Scholar 

  36. Castro Longoria, E., Vilchis Nestor, A. R., & Avalos Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B, 83, 42–48.

    Article  CAS  Google Scholar 

  37. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2005). Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. Journal of Biomedical Nanotechnology, 1, 47–53.

    Article  CAS  Google Scholar 

  38. Du, L., Xian, L., & Feng, J. X. (2011). Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. Journal of Nanoparticle Research, 13, 921–930.

    Article  CAS  Google Scholar 

  39. Velmurugan, P., Lee, S. M., Cho, M., Park, J. H., Seo, S. K., Myung, H., Bang, K. S., & Oh, B. T. (2014). Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Applied Microbiology and Biotechnology, 98, 8179–8189.

    Article  CAS  Google Scholar 

  40. Dusane, D., Pawar, V., Nancharaiah, Y., Venugopalan, V., Kumar, A., & Zinjarde, S. (2011). Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling, 27, 645–654.

    Article  CAS  Google Scholar 

  41. Golmoraj, V., Khoshayand, M., Amini, M., Moghadamd, K., Amin, G., & Shahverdi, A. (2011). The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. Journal of Experimental Nanoscience, 6, 200–208.

    Article  CAS  Google Scholar 

  42. Jain, R., Mody, K., Mishra, A., & Jha, B. (2012). Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohydrate Polymers, 89, 1110–1116.

    Article  CAS  Google Scholar 

  43. Inès, M., & Dhouha, G. (2015). Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydrate Research, 416, 59–69.

    Article  Google Scholar 

  44. Kurtzman, C. P., Price, N. P. J., Ray, K. J., & Kuo, T. M. (2010). Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters, 311, 140–146.

    Article  CAS  Google Scholar 

  45. Kulakovskaya, T., Shashkov, A., Kulakovskaya, E., Golubev, W., Zinin, A., Tsvetkov, Y., Grachev, A., & Nifantiev, N. (2009). Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities. Journal of Oleo Science, 58, 133–140.

    Article  CAS  Google Scholar 

  46. Kulakovskaya, T. V., Golubev, W. I., Tomashevskaya, M. A., Kulakovskaya, E. V., Shashkov, A. S., Grachev, A. A., Chizhov, A. S., & Nifantiev, N. E. (2010). Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia, 169, 117–123.

    Article  CAS  Google Scholar 

  47. Morita, T., Fukuoka, T., Imura, T., & Kitamoto, D. (2013). Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis. FEMS Yeast Research, 13, 44–49.

    Article  CAS  Google Scholar 

  48. Morita, T., Ishibashi, Y., Fukuoka, T., Imura, T., Sakai, H., Abe, M., & Kitamoto, D. (2011). Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Bioscience Biotechnology and Biochemistry, 75, 1597–1599.

    Article  CAS  Google Scholar 

  49. Joshi-Navare, K., Singh, P. K., & Prabhune, A. A. (2014). New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. European Journal of Lipid Science and Technology. doi:10.1002/ejlt.201300363.

    Google Scholar 

  50. Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica et Biophysica Acta, 1485, 145–152.

    Article  Google Scholar 

  51. Abalos, A., Pinazo, A., Infante, M., Casals, M., Garcia, F., & Manresa, A. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17, 1367–1371.

    Article  CAS  Google Scholar 

  52. Johnson, M., & Boese-Marrazzo, D. I. (1980). Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infection and Immunity, 29, 1028–1033.

    CAS  Google Scholar 

  53. Häußler, S., Nimtz, M., Domke, T., Wray, V., & Steinmetz, V. (1998). Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infection and Immunity, 66, 1588–1593.

    Google Scholar 

  54. Rehman, A., Raza, Z., Saif-ur-Rehman, Khalid, Z., Subramani, C., Rotello, V., & Hussain, I. (2010). Synthesis and use of self-assembled rhamnolipid microtubules as templates for gold nanoparticles assembly to form gold microstructures. Journal of Colloid and Interface Science, 347, 332–335.

    Article  CAS  Google Scholar 

  55. Kumar, D., Karthik, S. L., Kumar, G., & Rao, K. V. B. (2011). Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline, 3, 1100–1111.

    Google Scholar 

  56. Ganesh, K. C., Mamidyala, S. K., Das, B., Sridhar, B., Devi, G. S., & Karuna, M. S. (2010). Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. Journal of Microbiology and Biotechnology, 20, 1061–1068.

    Article  Google Scholar 

  57. Leelavathi, A., Rao, T. U. B., & Pradeep, T. (2011). Supported quantum clusters of silver as enhanced catalysts for reduction. Nanoscale Research Letters, 6, 123–132.

    Article  Google Scholar 

  58. Nalawade, P., Mukherjee, T., & Kapoor, S. (2013). Green synthesis of gold nanoparticles using glycerol as a reducing agent. Advance Nanoparticles, 2, 78–86.

    Article  Google Scholar 

  59. Chiu, C. Y., Chung, P. J., Lao, K. U., Liao, C. W., & Huang, M. H. (2012). Facet-dependent catalytic activity of gold nanocubes, octahedra, and rhombic dodecahedra toward 4-nitroaniline reduction. Journal of Physical Chemistry C, 116, 23757–23763.

    Article  CAS  Google Scholar 

  60. Liu, Y., Liu, L., Yuan, M., & Guo, R. (2013). Preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Colloids and Surfaces A, 417, 18–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from University Grants Commission under University with Potential for Excellence, Phase II. PTM thanks Council of Scientific and Industrial Research (CSIR), New Delhi, India, for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Zinjarde.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, P., Apte, M., Kumar, A.R. et al. Biogenic Nanoparticles from Schwanniomyces occidentalis NCIM 3459: Mechanistic Aspects and Catalytic Applications. Appl Biochem Biotechnol 179, 583–596 (2016). https://doi.org/10.1007/s12010-016-2015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2015-x

Keywords

Navigation