Skip to main content
Log in

Influence of water-rich tunnel by shield tunneling on existing bridge pile foundation in layered soils

分层地基中富水隧道盾构施工对既有桥梁桩基的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

At present, shield tunneling often needs to pass through a large number of bridge pile foundations. However, there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage. Based on Winkler model, the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived. Meanwhile, full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement, ground surface settlement trough, vertical and horizontal displacement of the pile and pile stress under three calculation conditions, i.e., not considering groundwater effect, considering stable groundwater effect and fluid-soil interaction. The results show that the calculated value is small when the effect of groundwater is not considered; the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction, and after the shield passing, the groundwater on both sides shows a flow trend of “U” shape on the ground surface supplying to the upper part of the tunnel; the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel, the upper pile body settles, and the lower pile body deforms upward. The horizontal displacement of pile body presents a continuous “S” shape distribution, causing stress concentration near the tunnel. The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation.

摘要

当前盾构施工常需穿越大量桥桩基础,关于盾构开挖引起地下水渗流对邻近桥桩影响的研究较 少。基于Winkler 地基模型推导盾构施工对邻近桥桩变形的计算公式,建立整体和局部三维有限元模 型。分析不考虑地下水作用、考虑稳定地下水作用及流固耦合三种计算工况下桥墩沉降量、地表沉降 槽、桩身竖直、水平变形量及桩身应力变化趋势。研究结果表明:当不考虑地下水作用时,计算数值 偏小;在流固耦合下开挖面的前上方土体渗流速度较周围土体的渗流速度快,在盾构通过后,两侧地 下水在地表呈现出“U”形向隧道上方补给的流动趋势;桩身竖向变形以隧道顶部水平位置为界,上部 桩身沉降,下部桩身向上变形;桩身水平变形呈现出连续“S”形分布,在隧道附近产生应力集中。流固 耦合的计算结果与现场实测数据更吻合,符合实际情况。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DING Z, WEI X J, WEI G. Prediction methods on tunnel-excavation induced surface settlement around adjacent building [J]. Geomechanics and Engineering, 2017, 12(2): 185–195. DOI: https://doi.org/10.12989/gae.2017.12.2.185.

    Article  Google Scholar 

  2. LIU C H, BEZUIJEN A, YANG M, CACHIM P. Elastic analysis of ground movements around a tunnel considering a buoyant lining moving upwards [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43: 1562–1575. DOI: https://doi.org/10.1002/nag.2902.

    Article  Google Scholar 

  3. SU Y, SU Y H, ZHAO M H, VLACHOPOULOS N. Tunnel stability analysis in weak rocks using the convergence confinement method [J]. Rock Mechanics and Rock Engineering, 2021, 54: 559–582. DOI: https://doi.org/10.1007/s00603-020-02304-y.

    Article  Google Scholar 

  4. MU L L, HUANG M S, FINNO R J. Tunneling effects on lateral behavior of pile rafts in layered soil [J]. Tunneling and Underground Space Technology, 2012, 28: 192–201. DOI: https://doi.org/10.1016/j.tust.2011.10.010.

    Article  Google Scholar 

  5. ZHANG Z G, XU C, GONG J F. Influence of tunneling on deflection of adjacent piles considering shearing displacement of foundation and 3D effects of lateral soils beside piles [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 846–856. DOI: https://doi.org/10.11779/CJGE201605010. (in Chinese)

    Google Scholar 

  6. ZHANG Z G, HUANG M S, XU C, JIANG Y J, WANG W D. Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model [J]. Tunneling and Underground Space Technology, 2018, 78: 146–158. DOI: https://doi.org/10.1016/j.tust.2018.04.025.

    Article  Google Scholar 

  7. NG C W W, LU H, PENG S Y. Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile [J]. Tunnelling and Underground Space Technology, 2013, 35: 189–199. DOI: https://doi.org/10.1016/j.tust.2012.07.008.

    Article  Google Scholar 

  8. FRANZA A, MARSHALL A M. Centrifuge and real-time hybrid testing of tunneling beneath piles and piled buildings [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(3): 04018110. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002003.

    Article  Google Scholar 

  9. SONG G Y, MARSHALL A M. Centrifuge study on the influence of tunnel excavation on piles in sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020129. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002401.

    Article  Google Scholar 

  10. SOOMRO M A, MANGI N, XIONG H, KUMAR M, MANGNEJO D A. Centrifuge and numerical modelling of stress transfer mechanisms and settlement of pile group due to twin stacked tunneling with different construction sequences [J]. Computers and Geotechnics, 2020, 121: 103449. DOI: https://doi.org/10.1016/j.compgeo.2020.103449.

    Article  Google Scholar 

  11. SOOMRO M A, HONG Y, NG C W W, LU H, PENG S Y. Load transfer mechanism in pile group due to single tunnel advancement in stiff clay [J]. Tunneling and Underground Space Technology, 2015, 45: 63–72. DOI: https://doi.org/10.1016/j.tust.2014.08.001.

    Article  Google Scholar 

  12. SOOMRO M A, NG C W W, LIU K, MEMON N A. Pile responses to side-by-side twin tunneling in stiff clay: Effects of different tunnel depths relative to pile [J]. Computers and Geotechnics, 2017, 84: 101–116. DOI: https://doi.org/10.1016/j.compgeo.2016.11.011.

    Article  Google Scholar 

  13. MESCHKE G, NINIĆ J, STASCHEIT J, ALSAHLY A. Parallelized computational modeling of pile-soil interactions in mechanized tunneling [J]. Engineering Structures, 2013, 47: 35–44. DOI: https://doi.org/10.1016/j.engstruct.2012.07.001.

    Article  Google Scholar 

  14. KHABBAZ H, GIBSON R, FATAHI B. Effect of constructing twin tunnels under a building supported by pile foundations in the Sydney central business district [J]. Underground Space, 2019, 4(4): 261–276. DOI: https://doi.org/10.1016/j.undsp.2019.03.008.

    Article  Google Scholar 

  15. YANG M, SUN Q, LI W C, MA K. Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation [J]. Journal of Central South University of Technology, 2011, 18(3): 909–916. DOI: https://doi.org/10.1007/s11771-011-0780-9.

    Article  Google Scholar 

  16. ZHAO M H, LIU D P, ZHANG L, JIANG C. 3D finite element analysis on pile-soil interaction of passive pile group [J]. Journal of Central South University of Technology, 2008, 15(1): 75–80. DOI: https://doi.org/10.1007/s11771-008-0016-9.

    Article  Google Scholar 

  17. JONGPRADIST P, KAEWSRI T, SAWATPARNICH A, SUWANSAWAT S, YOUWAI S, KONGKITKUL W, SUNITSAKUL J. Development of tunneling influence zones for adjacent pile foundations by numerical analyses [J]. Tunneling and Underground Space Technology, 2013, 34: 96–109. DOI: https://doi.org/10.1016/j.tust.2012.11.005.

    Article  Google Scholar 

  18. ZHAO B Y, WANG X P, ZHANG C, LI W C, ABBASSI R, CHEN K. Structural integrity assessment of shield tunnel crossing of a Railway Bridge using orthogonal experimental design [J]. Engineering Failure Analysis, 2020, 114: 104594. DOI: https://doi.org/10.1016/j.engfailanal.2020.104594.

    Article  Google Scholar 

  19. WANG Z, ZHANG K W, WEI G, LI B, LI Q, YAO W J. Field measurement analysis of the influence of double shield tunnel construction on reinforced bridge [J]. Tunneling and Underground Space Technology, 2018, 81: 252–264. DOI: https://doi.org/10.1016/j.tust.2018.06.018.

    Article  Google Scholar 

  20. SIRIVACHIRAPORN A, PHIENWEJ N. Ground movements in EPB shield tunneling of Bangkok subway project and impacts on adjacent buildings [J]. Tunneling and Underground Space Technology, 2012, 30: 10–24. DOI: https://doi.org/10.1016/j.tust.2012.01.003.

    Article  Google Scholar 

  21. ZHANG X M, YANG J S, ZHANG Y X, GAO Y F. Cause investigation of damages in existing building adjacent to foundation pit in construction [J]. Engineering Failure Analysis, 2018, 83: 117–124. DOI: https://doi.org/10.1016/j.engfailanal.2017.09.016.

    Article  Google Scholar 

  22. ZHOU D Q, FENG C X. Engineering characteristics and reinforcement program of inclined pre-stressed concrete pipe piles [J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3907–3923. DOI: https://doi.org/10.1007/s12205-019-0192-1.

    Article  Google Scholar 

  23. HUANG K, SUN Y W, HE J, HUANG X Q, JIANG M, LI Y J. Comparative study on grouting protection schemes for shield tunneling to adjacent viaduct piles [J]. Advances in Materials Science and Engineering, 2021, 2021: 5546970. DOI: https://doi.org/10.1155/2021/5546970.

    Google Scholar 

  24. HUANG K, SUN Y W, HUANG X Q, LI Y J, JIANG M, LIU K N. Effects of different construction sequences on ground surface settlement and displacement of single long pile due to twin paralleled shield tunneling [J]. Advances in Civil Engineering, 2021, 2021: 5559233. DOI: https://doi.org/10.1155/2021/5559233.

    Google Scholar 

  25. LI X F, DU S J, CHEN B. Unified analytical solution for deep circular tunnel with consideration of seepage pressure, grouting and lining [J]. Journal of Central South University, 2017, 24(6): 1483–1493. DOI: https://doi.org/10.1007/s11771-017-3552-3.

    Article  Google Scholar 

  26. WU C Z, HONG Y, CHEN Q S, KAREKAL S. A modified optimization algorithm for back analysis of properties for coupled stress-seepage field problems [J]. Tunneling and Underground Space Technology, 2019, 94: 103040. DOI: https://doi.org/10.1016/j.tust.2019.103040.

    Article  Google Scholar 

  27. YANG X L, HUANG F. Stability analysis of shallow tunnels subjected to seepage with strength reduction theory [J]. Journal of Central South University of Technology, 2009, 16(6): 1001–1005. DOI: https://doi.org/10.1007/s11771-009-0166-4.

    Article  Google Scholar 

  28. ZHANG F S, WANG T, LIU F, PENG M, FURTNEY J, ZHANG L M. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils [J]. Computers and Geotechnics, 2020, 124: 103617. DOI: https://doi.org/10.1016/j.compgeo.2020.103617.

    Article  Google Scholar 

  29. WANG Y C, LI Z Y, JING H W, LI Y B, WANG M T. Study on the seepage characteristics of deep buried tunnels under variable high-pressure water heads [J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 1477–1487. DOI: https://doi.org/10.1007/s10064-020-01986-6.

    Article  Google Scholar 

  30. LI Z, LUO Z J, XU C H, TAN J Z. 3D fluid-solid full coupling numerical simulation of soil displacement induced by shield tunneling [J]. Tunneling and Underground Space Technology, 2019, 90: 174–182. DOI: https://doi.org/10.1016/j.tust.2019.03.020.

    Article  Google Scholar 

  31. HUANG K, YANG W J, MA Q A, AN Y L, LI Y, ZHOU J W, QIU L. Influence of foundation excavation pit on adjacent metro tunnel using fluid-solid mechanics theory [J]. Journal of Central South University (Science and Technology), 2019, 50(1): 198–205. DOI: https://doi.org/10.11817/j.issn.1672-7207.2019.01.025. (in Chinese)

    Google Scholar 

  32. AN Y L, ZHOU J, OUYANG P B, LI J H. Analysis of tunnel face stability with the advanced pipes support [J]. Journal of Central South University, 2021, 28(2): 604–617. DOI: https://doi.org/10.1007/s11771-021-4625-x.

    Article  Google Scholar 

  33. LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846–856. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by HUANG Kan, SUN Yi-wei, ZHOU De-quan and LI Yu-jian. HUANG Kan provided the concept and edited the draft of manuscript. SUN Yi-wei established the finite models and calculated the results. SUN Yi-wei, JIANG Meng and HUANG Xian-qiang analyzed the data. The initial draft of the manuscript was written by SUN Yi-wei. All authors replied to reviewers comments and revised the final version.

Corresponding authors

Correspondence to De-quan Zhou  (周德泉) or Xian-qiang Huang  (黄先强).

Additional information

Conflict of interest

HUANG Kan, SUN Yi-wei, ZHOU De-quan, LI Yu-jian, JIANG Meng and HUANG Xian-qiang declare that they have no conflict of interest.

Foundation item: Project(52078060) supported by the National Natural Science Foundation of China; Project(2020JJ4606) supported by the National Science Foundation of Hunan Province, China; Project(18A127) supported by the Key Foundation of Education Department of Hunan Province, China; Project(2018IC19) supported by the International Cooperation and Development Project of Double-First-Class Scientific Research in Changsha University of Science & Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Sun, Yw., Zhou, Dq. et al. Influence of water-rich tunnel by shield tunneling on existing bridge pile foundation in layered soils. J. Cent. South Univ. 28, 2574–2588 (2021). https://doi.org/10.1007/s11771-021-4787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4787-6

Key words

关键词

Navigation