Skip to main content
Log in

Crustal velocity structure of the Northwest Sub-basin of the South China Sea based on seismic data reprocessing

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The deep crustal structure of the Northwest Sub-basin (NWSB) of the South China Sea (SCS) is of great importance for understanding the tectonic nature of the continent-ocean transition (COT) and magmatism in this oceanic basin. The 2-D wide-angle reflection/refraction seismic profile OBS2006-2 is almost parallel to the extinct spreading ridge (ESR) of the NWSB. In addition to the original data, we added the data of two reprocessed OBS stations, and carried out seismic phase re-picking and travel-time imaging to obtain the crustal velocity structure along this profile. Resolution tests demonstrate that the newly acquired velocity structure is more reliable than the prior interpretation. The depth of the Moho (23.5–11.8 km) and crustal thickness (20.5–6.5 km) systematically changes from continental crust of the Xisha Block to the oceanic crust within the NWSB. The COT zone has a width of ∼20 km and the depth of the Moho decreases from 15.0 to 11.0 km, corresponding to a ∼4 km decrease in crustal thickness (6–10 km). A high velocity layer (HVL, 7.2–7.4 km s−1) exists at the bottom of the crust at the location where the sharp lateral transition of the continental crust to the oceanic crust occurs. Age dating shows that the Double-peak Seamount was formed at ∼23 Ma, after the cessation of the NWSB seafloor spreading (∼32-25 Ma). The crust beneath the Double-peak Seamount is oceanic with a thickness of 9 km. We infer that this oceanic crust was formed by magmatic upwelling and decompression melting along a pre-existing zone of weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An A R, Choi S H, Yu Y, Lee D C. 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272–273: 192–204

    Google Scholar 

  • Ao W, Zhao M H, Qiu X L, Ruan A, Li J. 2012. Crustal structure of the Northwest Sub-Basin of the South China Sea and its tectonic implication (in Chinese). Earth Sci-J China Univ Geosci, 37: 779–790

    Google Scholar 

  • Bradshaw T K, Hawkesworth C J, Gallagher K. 1993. Basaltic volcanism in the Southern Basin and Range: No role for a mantle plume. Earth Planet Sci Lett, 116: 45–62

    Google Scholar 

  • Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia. J Geophys Res, 98: 6299–6328

    Google Scholar 

  • Cameselle A L, Ranero C R, Franke D, Barckhausen U. 2017. The continent-ocean transition on the northwestern South China Sea. Basin Res, 29: 73–95

    Google Scholar 

  • Caress D W, McNutt M K, Detrick R S, Mutter J C. 1995. Seismic imaging of hotspot-related crustal underplating beneath the Marquesas Islands. Nature, 373: 600–603

    Google Scholar 

  • Carlson R L, Miller D J. 2003. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys Res Lett, 30: 1250

    Google Scholar 

  • Castillo P R, Clague D A, Davis A S, Lonsdale P F. 2010. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific. Geochem Geophys Geosyst, 11: 481–492

    Google Scholar 

  • Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 100: 9761–9788

    Google Scholar 

  • Clift P D, Lin J, ODP Leg 184 Scientific Party. 2001. Patterns of extension and magmatism along the continent-ocean boundary, South China margin. In: Wilson R C L, Beslier M O, Whitmarsh R B, Froitzheim N, Taylor B, eds. Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Spec Publ Geol Soc London, 187: 489–510

  • Contreras-Reyes E, Grevemeyer I, Watts A B, Planert L, Flueh E R, Peirce C. 2010. Crustal intrusion beneath the Louisville hotspot track. Earth Planet Sci Lett, 289: 323–333

    Google Scholar 

  • Dannowski A, Grevemeyer I, Ranero C R, Ceuleneer G, Maia M, Morgan J P, Gente P. 2010. Seismic structure of an oceanic core complex at the Mid-Atlantic Ridge, 22°19′N. J Geophys Res, 115: B07106

    Google Scholar 

  • Ding W W, Li M B, Zhao L H, Ruan A, Wu Z. 2009. Cenozoic tectonosedimentary characteristics and extension model of the Northwest Sub-basin, South China Sea (in Chinese). Geosci Front, 16: 147–156

    Google Scholar 

  • Ding W W, Li M B, Zhao L, Ruan A, Wu Z. 2011. Cenozoic tectonosedimentary characteristics and extension model of the Northwest Sub-basin, South China Sea. Geosci Front, 2: 509–517

    Google Scholar 

  • Ding W W, Schnabel M, Franke D, Ruan A G, Wu Z L. 2012. Crustal structure across the Northwestern margin of South China Sea: Evidence for magma-poor rifting from a wide-angle seismic profile. Acta Geol Sin-Engl Ed, 86: 854–866

    Google Scholar 

  • Ding W, Sun Z, Dadd K, Fang Y, Li J. 2018. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth Planet Sci Lett, 488: 115–125

    Google Scholar 

  • Ding W, Sun Z, Mohn G, Nirrengarten M, Tugend J, Manatschal G, Li J. 2020. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results. Earth Planet Sci Lett, 531: 115932

    Google Scholar 

  • Fan C, Xia S, Cao J, Zhao F, Sun J, Wan K, Xu H. 2019. Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data. Mar Geol, 410: 70–87

    Google Scholar 

  • Guo X, Zhao M, Huang H, Qiu X, Wang J, He E, Zhang J. 2016. Crustal structure of Xisha block and its tectonic attributes (in Chinese). Chin J Geophys, 59: 260–271

    Google Scholar 

  • Hao T Y, Huang S, Xu Y, Li Z, Xu Y, Lei M, Yang J. 2008. Comprehensive geophysical research on the deep structure of Northeastern South China Sea (in Chinese). Chin J Geophys, 51: 1785–1796

    Google Scholar 

  • Hawkesworth C, Scherstén A. 2007. Mantle plumes and geochemistry. Chem Geol, 241: 319–331

    Google Scholar 

  • Huang J. 2014. P- and S-wave tomography of the Hainan and surrounding regions: Insight into the Hainan plume. Tectonophysics, 633: 176–192

    Google Scholar 

  • Huang X L, Niu Y, Xu Y G, Ma J L, Qiu H N, Zhong J W. 2013. Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: Constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contrib Mineral Petrol, 165: 437–455

    Google Scholar 

  • Huismans R, Beaumont C. 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473: 74–78

    Google Scholar 

  • Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett, 157: 193–207

    Google Scholar 

  • Korenaga J, Holbrook W S, Kent G M, Kelemen P B, Detrick R S, Larsen H C, Hopper J R, Dahl-Jensen T. 2000. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J Geophys Res, 105: 21591–21614

    Google Scholar 

  • Larsen H C, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian C A, Boaga J, Bowden S A, Briais A, Chen Y, Cukur D, Dadd K, Ding W, Dorais M, Ferré E C, Ferreira F, Furusawa A, Gewecke A, Hinojosa J, Höfig T W, Hsiung K H, Huang B, Huang E, Huang X L, Jiang S, Jin H, Johnson B G, Kurzawski R M, Lei C, Li B, Li L, Li Y, Lin J, Liu C, Liu C, Liu Z, Luna A J, Lupi C, McCarthy A, Ningthoujam L, Osono N, Peate D W, Persaud P, Qiu N, Robinson C, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S, Straub S, Su X, Su C, Tian L, van der Zwan F M, Wan S, Wu H, Xiang R, Yadav R, Yi L, Yu P S, Zhang C, Zhang J, Zhang Y, Zhao N, Zhong G, Zhong L. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat Geosci, 11: 782–789

    Google Scholar 

  • Lee T Y, Lo C H, Chung S L, Chen C Y, Wang P L, Lin W P, Hoang N, Chi C T, Yem N T. 1998. Ar/Ar dating result of Neogene basalts in Vietnam and its tectonic implication. In: Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: American Geophysical Union

    Google Scholar 

  • Lei J, Zhao D, Steinberger B, Wu B, Shen F, Li Z. 2009. New seismic constraints on the upper mantle structure of the Hainan plume. Phys Earth Planet Inter, 173: 33–50

    Google Scholar 

  • Li C F, Li J, Ding W, Franke D, Yao Y, Shi H, Pang X, Cao Y, Lin J, Kulhanek D K, Williams T, Bao R, Briais A, Brown E A, Chen Y, Clift P D, Colwell F S, Dadd K A, Hernández-Almeida I, Huang X L, Hyun S, Jiang T, Koppers A A P, Li Q, Liu C, Liu Q, Liu Z, Nagai R H, Peleo-Alampay A, Su X, Sun Z, Tejada M L G, Trinh H S, Yeh Y C, Zhang C, Zhang F, Zhang G L, Zhao X. 2015a. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. J Geophys Res-Solid Earth, 120: 1377–1399

    Google Scholar 

  • Li C F, Lin J, Kulhanek D K, the Expedition 349 Scientists. 2015b. Proceedings of the International Ocean Discovery Program. South China Sea Tectonics. vol. 349. College Station (International Ocean Discovery Program), TX

    Google Scholar 

  • Li C F, Shi X, Zhou Z, Li J, Geng J, Chen B. 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys J Int, 182: 1229–1247

    Google Scholar 

  • Li C F, Song T R. 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chin Sci Bull, 57: 3165–3181

    Google Scholar 

  • Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y, Zhao X, Liu Q, Kulhanek D K, Wang J, Song T, Zhao J, Qiu N, Guan Y, Zhou Z, Williams T, Bao R, Briais A, Brown E A, Chen Y, Clift P D, Colwell F S, Dadd K A, Ding W, Almeida I H, Huang X L, Hyun S, Jiang T, Koppers A A P, Li Q, Liu C, Liu Z, Nagai R H, Peleo-Alampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C, Zhang F, Zhang G L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem Geophys Geosyst, 15: 4958–4983

    Google Scholar 

  • Li C F, Zhou Z, Li J, Chen B, Geng J. 2008. Magnetic zoning and seismic structure of the South China Sea ocean basin. Mar Geophys Res, 29: 223–238

    Google Scholar 

  • Li X, Li J, Yu X, Wang C, Jourdan F. 2015. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin. Geosci Front, 6: 571–577

    Google Scholar 

  • Liu G D, Wang X Y. 1990. Map series of geology-geophysics of China Sea waters and adjacent areas (on the scale of 1:5000000) (in Chinese). Mar Geol Quat Geol, 10: 93–97

    Google Scholar 

  • Liu J H. 2000. The characteristics of seismic reflection waves in the middle area of the South China Sea and their significance (in Chinese). Acta Oceanol Sin, 22: 73–80

    Google Scholar 

  • Liu S, Zhao M, Sibuet J C, Qiu X, Wu J, Zhang J, Chen C, Xu Y, Sun L. 2018. Geophysical constraints on the lithospheric structure in the northeastern South China Sea and its implications for the South China Sea geodynamics. Tectonophysics, 742–743: 101–119

    Google Scholar 

  • Nissen S S, Hayes D E, Bochu Y, Zeng W, Chen Y, Nu X. 1995. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. J Geophys Res, 100: 22447–22483

    Google Scholar 

  • Niu Y, Collerson K D, Batiza R, Wendt J I, Regelous M. 1999. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. J Geophys Res, 104: 7067–7087

    Google Scholar 

  • Ouyang Q, Wu Z L, Wei X D, Niu X W, Ruan A G, Yu Z T. 2017. Comparison of crustal structures in the fossil spreading center of South China Sea basins and the tectonic significance. Chin Sci Bull, 62: 2380–2391

    Google Scholar 

  • Qiu X, Ye S, Wu S, Shi X, Zhou D, Xia K, Flueh E R. 2001. Crustal structure across the Xisha trough, northwestern South China Sea. Tectonophysics, 341: 179–193

    Google Scholar 

  • Richards M, Contreras-Reyes E, Lithgow-Bertelloni C, Ghiorso M, Stixrude L. 2013. Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot provinces. Geochem Geophys Geosyst, 14: 604–619

    Google Scholar 

  • Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98–119

    Google Scholar 

  • Sun Z, Ding W, Zhao X, Qiu N, Lin J, Li C. 2019. The latest spreading periods of the South China Sea: New constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data. J Geophys Res-Solid Earth, 124: 9980–9998

    Google Scholar 

  • Sun Z, Jian Z, Stock J M, Larsen H C, Klaus A, Alvarez Zarikian C A, and the Expedition 367/368 Scientists. 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368: College Station, TX (International Ocean Discovery Program)

    Google Scholar 

  • Tarantola A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. New York: Elsevier Sci. 613

    Google Scholar 

  • Toomey D R, Foulger G R. 1989. Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland. J Geophys Res, 94: 17497–17510

    Google Scholar 

  • Tu K, Flower M F J, Carlson R W, Xie G, Chen C Y, Zhang M. 1992. Magmatism in the South China Basin. Chem Geol, 97: 47–63

    Google Scholar 

  • Wang J, Zhao M, Qiu X, Sibuet J C, He E, Zhang J, Tao C. 2016. 3D seismic structure of the Zhenbei-Huangyan seamounts chain in the East Sub-basin of the South China Sea and its mechanism of formation. Geol J, 51: 448–463

    Google Scholar 

  • Wang P X. 2009. Toward scientific breakthrough in the South China Sea (in Chinese). J Trop Oceanogr, 28: 1–4

    Google Scholar 

  • Wang P. 2018. Fifty years of scientific ocean drilling: Review and prospect. Chin Sci Bull, 63: 3868–3876

    Google Scholar 

  • Wang Q, Qiu X, Zhao M, Huang H, Ao W. 2016. Analysis and processing of abnormal OBS data in the South China Sea. Chin J Geophys, 59: 153–164

    Google Scholar 

  • Wang T K, Chen M K, Lee C S, Xia K. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412: 237–254

    Google Scholar 

  • Wang X C, Li Z X, Li X H, Li J, Xu Y G, Li X H. 2013. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth Planet Sci Lett, 377–378: 248–259

    Google Scholar 

  • Wang Y J, Han X Q, Luo Z H, Qiu Z Y, Ding W W, Li J B, Gao S S, Chen R H. 2009. Late Miocene magmatism and evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from petrochemistry and chronology (in Chinese). Acta Oceanol Sin, 31: 93–102

    Google Scholar 

  • Watts A B, ten Brink U S, Buhl P, Brocher T M. 1985. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain. Nature, 315: 105–111

    Google Scholar 

  • Wei X, Zhu Y J, Chen Y H, Hu L G, Wu J Y, Jiang J Q, Li Z Y. 2012. Ocean crust character and spreading age of Northwest Sub-sea, the South China Sea: Evidence from sediment strata and the abnormity of gravity and magnetism (in Chinese). Acta Geol Sin, 86: 383–388

    Google Scholar 

  • Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Trans AGU, 79: 579

    Google Scholar 

  • White R S, McKenzie D, O’Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res, 97: 19683

    Google Scholar 

  • Wu Z L, Li J B, Ruan A G, Lou H, Ding W W, Niu X W, Li X B. 2012. Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment. Sci China Earth Sci, 55: 159–172

    Google Scholar 

  • Wu Z L, Ruan A G, Li J B, Ding W W, Li X Y, Qiu X L, Zhao M H, Guo X W. 2008. New progress of deep crust sounding in the southern margin of South China Sea using ocean bottom seismometers (in Chinese). South China J Seismo, 28: 21–28

    Google Scholar 

  • Xia S, Zhao D, Sun J, Huang H. 2016. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res, 36: 46–56

    Google Scholar 

  • Xia S, Zhao F, Zhao D, Fan C, Wu S, Mi L, Sun J, Cao J, Wan K. 2018. Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: New insights from integrated seismology. Tectonophysics, 744: 227–238

    Google Scholar 

  • Xu Y G, Wei J X, Qiu H N, Zhang H H, Huang X L. 2012. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chin Sci Bull, 57: 3150–3164

    Google Scholar 

  • Yan P, Zhou D, Liu Z. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338: 1–21

    Google Scholar 

  • Yan Q S, Shi X F. 2009. Characteristics of volcaniclastic rocks from seamounts in the South China Sea and its geological implications (in Chinese). Acta Petrol Sin, 25: 3327–3334

    Google Scholar 

  • Yan Q S, Shi X F, Wang K S, Bu W R, Xiao L. 2008. Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Sci China Ser D-Earth Sci, 51: 550–566

    Google Scholar 

  • Yao B C. 1996. Tectonic evolution of the South China Sea in Cenozoic (in Chinese). Mar Geol Quat Geol, (2): 1–13

  • Yao B C. 1999. Tectonic characteristics of northwest subbasin and seafloor spreading history of South China Sea in Cenozoic (in Chinese). Trop Oceanol, (1): 7–15

  • Yao B C, Zeng W J, Chen Y Z. 1994. Xisha trough of South China Sea—An ancient suture (in Chinese). Mar Geol Quat Geol, 14: 1–10

    Google Scholar 

  • Yu M, Yan Y, Huang C Y, Zhang X, Tian Z, Chen W H, Santosh M. 2018. Opening of the South China Sea and upwelling of the Hainan plume. Geophys Res Lett, 45: 2600–2609

    Google Scholar 

  • Zelt C A, Forsyth D A. 1994. Modeling wide-angle seismic data for crustal structure: Southeastern Grenville province. J Geophys Res, 99: 11687–11704

    Google Scholar 

  • Zelt C A, Smith R B. 1992. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int, 108: 16–34

    Google Scholar 

  • Zhang G L, Chen L H, Jackson M G, Hofmann A W. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci, 10: 229–235

    Google Scholar 

  • Zhang H Y, Qiu X L, Zhang J Z, He E Y, You Q Y. 2019. Time record and accurate correction of Chinese OBS raw data (in Chinese). Chin J Geophys, 62: 172–182

    Google Scholar 

  • Zhang J, Li J, Ruan A, Wu Z, Yu Z, Niu X, Ding W. 2016. The velocity structure of a fossil spreading centre in the Southwest Sub-basin, South China Sea. Geol J, 51: 548–561

    Google Scholar 

  • Zhang J, Wang J Y. 2000. The deep geothermal characteristics of marginal region of the north part of South China Sea (in Chinese). Chin Sci Bull, 45: 1095–1100

    Google Scholar 

  • Zhang M S. 1991. Quaternary events in Xisha coral reef region (in Chinese). Quat Sci, 11: 165–177

    Google Scholar 

  • Zhao M H, Du F, Wang Q, Qiu X L, Han B, Sun L T, Zhang J, Xia S H, Fan C Y. 2018a. Current status and challenges for three-dimensional deep seismic survey in the South China Sea (in Chinese). Earth Sci-J China Univ Geosci, 43: 3749–3761

    Google Scholar 

  • Zhao M, He E, Sibuet J C, Sun L, Qiu X, Tan P, Wang J. 2018b. Post-seafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust. Geochem Geophys Geosyst, 19: 621–641

    Google Scholar 

  • Zhao M H, Qiu X L, Xia K Y, Xie J B, Ye C M. 2004. Onshore-offshore seismic data processing and preliminary results in the South China Sea (in Chinese). J Trop Oceanogr, 23: 58–63

    Google Scholar 

  • Zhao M, Qiu X, Xia S, Xu H, Wang P, Wang T K, Lee C S, Xia K. 2010. Seismic structure in the northeastern South China Sea: S-wave velocity and VP/VS ratios derived from three-component OBS data. Tectonophysics, 480: 183–197

    Google Scholar 

  • Zhao Y, Ding W, Yin S, Li J, Zhang J, Ding H. 2020. Asymmetric postspreading magmatism in the South China Sea: Based on the quantification of the volume and its spatiotemporal distribution of the seamounts. Int Geol Rev, 62: 955–969

    Google Scholar 

  • Zhu J, Qiu X, Kopp H, Xu H, Sun Z, Ruan A, Sun J, Wei X. 2012. Shallow anatomy of a continent-ocean transition zone in the northern South China Sea from multichannel seismic data. Tectonophysics, 554–557: 18–29

    Google Scholar 

  • Zhu J J, Xu H L, Qiu X L, Ye C, Li S. 2018. Crustal structure and rifting of the northern South China Sea margin: Evidence from shoreline-crossing seismic investigations. Geol J, 53: 2065–2083

    Google Scholar 

Download references

Acknowledgements

All crew of the “Fendou 7” of Shanghai Offshore Oil Bureau assisted in data acquisition of OBS2006-2 survey data; Professor Aiguo Ruan of the Second Institute of Oceanography, Ministry of Natural Resources provided the original log files of OBS2006-2; Xinming Pang, Zizheng Li, Fudong Yang, and Siqing Liu gave support and assistance in data processing. The GMT software (Wessel and Smith, 1998) was used for drawing some of the pictures. Three anonymous reviewers and scientific editors are thanked for their very careful reviews and constructive suggestions, which greatly enhanced the scientific and technical level of the paper. Xiaoyun Tang from Institute of Foreign Languages of CUG and Walter D. Mooney from US Geological Survey kindly read the final version of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41730532, 91958212, 91858212, 41606064), the Major Projects for Talent Research Team Introduction of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019ZD0204) and the Guangdong Natural Science Foundation Research Team Project (Grant No. 2017A030312002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, M., Zhang, H. et al. Crustal velocity structure of the Northwest Sub-basin of the South China Sea based on seismic data reprocessing. Sci. China Earth Sci. 63, 1791–1806 (2020). https://doi.org/10.1007/s11430-020-9654-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9654-4

Keywords

Navigation