Skip to main content

Advertisement

Log in

Microclimate affects soil chemical and mineralogical properties of cold alpine soils of the Altai Mountains (Russia)

  • SOIL FORMATION AND WEATHERING IN TIME AND SPACE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The present work focuses on cold alpine soils of the Altai Mountains (Siberia, Russia). Permafrost is widespread and often occurs at a depth of about 100 cm. The area is characterised by extremely cold winters and cool summers: the aim was consequently to find out whether weathering could be more intense on thermally less unfavoured conditions or whether the abundance of water could be a more important factor.

Materials and methods

We investigated 10 soils in a very small area close to a local glacier tongue. Five of the investigated soils were south-facing and the other five north-facing. The soils have the same parent material (mica-rich till), altitude, topography and soil age. The vegetation is alpine grassland that is partially intersected with some juniper and mosses. Soil chemical properties such as organic C, N, soil organic matter quality (using DRIFT), pH value, (oxy)hydroxides, total elemental contents (XRF) and soil micromorphology and mineralogy (using diagnostic treatments and XRD) were determined. The age constraint of the site was given by geomorphic studies together with 14C dating of a nearby peat bog and the stable organic matter fraction of the soils.

Results and discussion

The soils have a Holocene age. The results showed astonishingly clearly—similarly to the European Alps—that the north-facing soils have a higher weathering state. This is expressed by lower pH values, higher oxalate and dithionite extractable Fe, Al, Mn and Si contents, higher C and N concentrations and stocks when compared to the south-facing sites. No statistically significant differences with respect to weathering indexes could be detected.

The geochemical evolution of the soils seems to be enhanced at north-facing sites, even though very severe climatic conditions prevail. Furthermore, biodegradation seems to be less pronounced on north-facing compared to south-facing sites as poorly degraded organic matter is accumulated. This gives rise to more organic ligands that promote metal binding and their subsequent eluviation along the soil profile.

Conclusions

We consequently must assume that weathering is not limited by low temperatures in the active layer but is rather controlled by soil moisture that seems to be higher during the warmer period in the north-facing soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agatova AR, Hule VV, Mistrykov AA (2002) Dynamics of Sophiysky glacier (south-eastern Altay): the Late Glacial Maximum-XX century. Geomorphology (Geomorphologia) 2:92–105

    Google Scholar 

  • Ascher J, Sartori G, Graefe U, Thornton B, Ceccherini MT, Pietramellara G, Egli M (2012) Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biol Fertil Soils 48:709–725

    Article  Google Scholar 

  • Bender Koch C, Mørup S, Madsen MB, Vistisen L (1995) Iron-containing weathering products of basalt in a cold, dry climate. Chem Geol 122:109–112

    Article  CAS  Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Brantley SL, Megonigal JP, Scatena FN, Balogh-Brunstad Z, Barnes RT, Bruns MA, van Cappellen P, Dontsova K, Hartnett HE, Hartshorn AS, Heimsath A, Herndorn E, Jin L, Keller CK, Leake JR, McDowell WH, Meinzer FC, Mozdzer TJ, Petsch S, Pett-Ridge J, Pregitzer KS, Raymond PA, Riebe CS, Shumaker K, Sutton-Grier A, Walter R, Yoo K (2011) Twelve testable hypotheses on the geobiology of weathering. Geobiology 9:140–165

    CAS  Google Scholar 

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification (Eds) Monograph 5, Mineralogical Society, London

  • Bronk Ramsey C (2001) Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–363

    Google Scholar 

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  • Carter BJ, Ciolkosz EJ (1991) Slope gradient and aspect effects on soils developed from sandstone in Pennsylvania. Geoderma 49:199–213

    Article  Google Scholar 

  • Certini G, Ugolini FC, Corti G, Agnelli A (1998) Early stages of podzolization under Corsican pine (Pinus nigra Arn. ssp. laricio). Geoderma 83:103–125

    Article  Google Scholar 

  • Conen F, Yakutin MV, Zumbrunn T, Leifeld J (2007) Organic carbon and microbial biomass in two soil development chronosequences following glacial retreat. Eur J Soil Sci 58:758–762

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH GmbH & Co., Weinheim

    Google Scholar 

  • Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236

    Article  Google Scholar 

  • Dahms D, Favilli F, Krebs R, Egli M (2012) Soil weathering and accumulation rates of oxalate-extractable phases from alpine chronosequences of up to 1 Ma in age. Geomorphology 151–152:99–113

    Article  Google Scholar 

  • Dixon JL, von Blanckenburg F (2012) Soils as pacemakers and limiters of global silicate weathering. CR Geosci 344:596–609

    Article  Google Scholar 

  • Dixon JL, Heimsath AM, Anmundson R (2009) The critical role of climate and saprolite weathering in landscape evolution. Earth Surf Proc Land 34:1507–1521

    Article  Google Scholar 

  • Dixon JL, Hartshorn AS, Heimsath AM, DiBiase RA, Whipple KX (2012) Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth Planet Sci Lett 323–324:40–49

    Article  Google Scholar 

  • Dokuchaev VV (1883) Russian Chernozem. In: Kaner N. (ed) Selected works of V. V. Dokuchaev (1967), Jerusalem, Int. Program Sci. Transl., pp 1–419

  • Egli M, Wernli M, Kneisel C, Haeberli W (2006) Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): I. Soil type chronosequence. Arch Antarct Alp Res 38:499–509

    Article  Google Scholar 

  • Egli M, Mirabella A, Sartori G, Giaccai D, Zanelli R, Plötze M (2007) Effect of slope aspect on transformation of clay minerals in alpine soils. Clay Miner 42:375–401

    Article  Google Scholar 

  • Egli M, Mirabella A, Sartori G (2008) The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102:307–324

    Article  Google Scholar 

  • Egli M, Sartori G, Mirabella A (2010) The effects of exposure and climate on the weathering of late Pleistocene and Holocene alpine soils. Geomorphology 114:466–482

    Article  Google Scholar 

  • Egli M, Wernli M, Burga C, Kneisel C, Mavris C, Valboa G, Mirabella A, Plötze M, Haeberli W (2011) Fast but spatially scattered smectite-formation in the proglacial area Morteratsch: an evaluation using GIS. Geoderma 164:11–21

    Article  CAS  Google Scholar 

  • Falsone G, Celi L, Caimi A, Simonov G, Bonifacio E (2012) The effect of clear cutting on podzolisation and soil carbon dynamics in boreal forests (Middle Taiga zone, Russia). Geoderma 177–178:27–38

    Article  Google Scholar 

  • Favilli F, Egli M, Cherubini P, Sartori G, Haeberli W, Delbos E (2008) Comparison of different methods of obtaining a resilient organic matter fraction in alpine soils. Geoderma 145:355–369

    Article  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Minireview. Environ Microbiol 9:1613–1631

    Article  CAS  Google Scholar 

  • Hall K, Thorn CE, Matsuoka N, Prick A (2002) Weathering in cold regions: some thoughts and perspectives. Prog Phys Geogr 26:577–603

    Article  Google Scholar 

  • Harnois L (1988) The CIW index: a chemical index of weathering. Sediment Geol 55:319–322

    Article  CAS  Google Scholar 

  • Harrington CD, Whitney JW (1987) Scanning electron microscope method of rock-varnish dating. Geology 15:967–970

    Article  CAS  Google Scholar 

  • Hitz C, Egli M, Fitze P (2002) Determination of the sampling volume for representative analysis of alpine soils. Z Pflanz Bodenkunde 165:326–331

    Article  CAS  Google Scholar 

  • Hlavay J, Jonas K, Elek S, Inczedy J (1978) Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods; II. Investigations on quartz and feldspar. Clays Clay Minerals 26:139–143

    Article  CAS  Google Scholar 

  • Hugelius G, Kuhry P (2009) Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Global Biogeochem Cycle 23:GB3006

    Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources (2nd ed.). World Soil Resources Reports No. 103, First update, FAO, Rome

  • Jann B (2005) Einführung in die Statistik. 2. bearbeitete Auflage, Oldenburg Wissenschaftsverlag, München

  • Jenny H (1941) Factors of soil formation. Mc Graw-Hill Book Company, New York

    Google Scholar 

  • Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res Biogeosci 112:G02017

    Article  Google Scholar 

  • Klemmedson JO (1964) Topofunction of soils and vegetation in a landscape. Am Soc Agron 5:176–189

    Google Scholar 

  • Kloprogge JT, Hickey L, Frost RL (2004) FT-Raman and FT-IR spectroscopic study of the local structure of synthetic Mg/Zn/Al-hydrotalcites. J Raman Spectrosc 35:967–974

    Article  CAS  Google Scholar 

  • Konishchev VN, Rogov VV (1993) Investigations of cryogenic weathering in Europe and Northern Asia. Permafr Periglac 4:49–64

    Article  Google Scholar 

  • Kronberg GI, Nesbitt HW (1981) Quantification of weathering of soil chemistry and soil fertility. J Soil Sci 32:453–459

    Article  CAS  Google Scholar 

  • Langer K, Raith M (1974) Infrared spectra of Al-Fe(III)-epidotes and zoisites, Ca2(Al1-pFe3+ p)Al2O(OH)[Si2O7][SiO4]. Am Mineral 59:1249–1258

    CAS  Google Scholar 

  • Lanson B (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays Clay Minerals 45:132–146

    Article  CAS  Google Scholar 

  • Lessovaia SN, Polekhovsky YS (2009) Mineralogical composition of shallow soils on basic and ultrabasic rocks of east Fennoscandinavia and of the Ural Mountains, Russia. Clays Clay Minerals 57:476–485

    Article  CAS  Google Scholar 

  • Lessovaia S, Dultz S, Polekhovsky Y, Krupskaya V, Vigasina M, Melchakova L (2012) Rock control of pedogenic clay mineral formation in a shallow soil from serpentinous dunite in the polar Urals, Russia. Appl Clay Sci 64:4–11

    Article  CAS  Google Scholar 

  • Lorenzoni P, Mirabella A, Bidini C, Lulli L (1995) Soil genesis on trachytic and leucitic lavas of Cimini volcanic complex (Latium, Italy). Geoderma 68:79–99

    Article  CAS  Google Scholar 

  • Lundström US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94:91–107

    Article  Google Scholar 

  • Macyk TM, Pawluk S, Lindsay D (1978) Relief and microclimate as related to soil properties. Can J Soil Sci 58:421–438

    Article  CAS  Google Scholar 

  • Madejova J, Komadel P (2005) Information available from infrared spectra of the fine fraction of bentonites. In: Kloprogge JT (ed) The application of vibration spectroscopy of clay minerals and layered double hydroxides, CMS workshop lectures, vol 13. The Clay Mineral Society, Aurora, CO, pp 65–98

    Google Scholar 

  • Marinina AM, Samoilova GS (1987) Physical geography of the mountainous (Phizicheskaya geographiya Gornogo Altaya) Barnaul BGPE (in Russian)

  • Mavris C, Egli M, Plötze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (upper Engadine, Switzerland). Geoderma 155:359–371

    Article  CAS  Google Scholar 

  • McKeague JA, Brydon JE, Miles NM (1971) Differentiation of forms of extractable iron and aluminium in soils. Soil Sci Soc Am Proc 35:33–38

    Article  CAS  Google Scholar 

  • Mehra OP, Jackson ML (1958) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner 7:317–327

    Article  Google Scholar 

  • Mizota C, van Reeuwijk LP (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climate regions. International Soil Reference and Information Centre, Soil Monograph, vol. 2, Wageningen

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York, NY

    Google Scholar 

  • Narozhniy Y, Zemtsov V (2011) Current state of the Altai Glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio 40:575–588

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  CAS  Google Scholar 

  • Ogureeva GN (1980) Botanical geography of Altai (Botanicheskaya geographia Altaya). Nauka, Moscow (in Russian)

    Google Scholar 

  • Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) (2010) Permafrost ecosystems: Siberian larch forests, ecological studies, Vol. 209, Springer Science + Business Media B.V.

  • Osokina VG (managing ed), Babaeva LI, Sazonova TN, Fomichkina TM, Shevchenko MA, Prokudina TM, Volodina KA, Ivanova ES, Shestel TV (1993) Scientific climate handbook of the USSR. series 3, multi-annual data, part 1 – 6, issue 20, regions of Tomsk, Novosibirsk, Altai and province of Kemerovo. Directorate of Hydrometeorology, Hydrometeorological Centre of the West-Siberian territory, Hydrometeoisdat, Sankt-Petersburg (in Russian)

  • Ostanin OV, Mikhailov NN, Arkhipov SM (2004) Change of glaciers of south and central Altai from the end of XIX century and tendencies of its development in XXI (Izmenenie lednikov uuzhnogo e zentral’nogo Altaya s konza XIX v. e tendenzii ekh razvitiya v XXI v.) Geography and nature management of Siberia (Geographiya e prirodopol’zovabie Sibiri) 7:172-182, Barnaul (in Russian)

    Google Scholar 

  • Piccolo A, Mirabella A (1985) Effetto di differenti estraenti inorganici e organici su alcune proprietà chimiche e chimico-fisiche di un acido umico. Annali dell’Istituto Sperimentale per lo Studio e Difesa Suolo 16:159–168

    Google Scholar 

  • Rasmussen C, Brantley SL, Richter D, Blum A, Dixon J, White A (2011) Strong climate control on plagioclase weathering in granitic terrain. Earth Planetary Sci Lett 301:521–530

    Article  CAS  Google Scholar 

  • Rech JA, Reeves RW, Hendricks D (2001) The influence of slope aspect on soil weathering processes in the Springerville volcanic field, Arizona. Catena 43:49–62

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    CAS  Google Scholar 

  • Schroeder PA (2002) Infrared spectroscopy in clay science. In: Rule A, Guggenheim S (eds) CMS workshop lectures, vol. 11, teaching clay science. The Clay Mineral Society, Aurora, CO, pp 181–206

    Google Scholar 

  • Senesi N, D’Orazio V, Ricca G (2003) Humic acids in the first generation of EUROSOILS. Geoderma 116:325–344

    Article  CAS  Google Scholar 

  • Simas FNB, Schaefer CEGR, Melo VF, Guerra MBB, Saunders M, Gilkes RJ (2006) Clay sized minerals in permafrost-affected soils (Cryosols) from King George Island. Antarctica. Clays Clay Minerals 54:721–736

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York, NY

    Google Scholar 

  • Stumm W, Wieland E (1990) Dissolution of oxide and silicate minerals: rates depend on surface speciation. In: Stumm W (ed) Aquatic chemical kinetics: reaction rates of processes in natural waters. Wiley-Interscience, New York, pp 367–398

    Google Scholar 

  • Syromyatina MV (2010) Recent changes of climate and elements of high-altitude belts of Altai landscapes (Sovremennye izmeneneya klimata b elementov vysotnoi poyasnosti landshaftov Altaya). PhD thesis, St-Petersburg (in Russian)

  • Tan KH (2003) Humic matter in soil and the environment: principles and controversies. Marcel Dekker, Inc., New York – Basel

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cyles 23:GB2023

    Google Scholar 

  • Tonkonogov VD, Gradusov BP, Rubilina NE, Targulian VO, Chizhikova NP (1987) On the differentiation of the mineralogical and chemical compositions of soddy podzolic and podzolic soils (K differenziazii mineralogicheskogo e khimicheskogo sostava dernovo-podzolistykh e podzolistykh pochv). Pochvovedenie 3:68–81 (in Russian)

    Google Scholar 

  • Ugolini FC, Corti G, Certini G (2006) Pedogenesis in the sorted patterned ground of Devon plateau, Devon Island, Nunavut, Canada. Geoderma 136:87–106

    Article  CAS  Google Scholar 

  • Vantelon D, Pelletier M, Michot LJ, Barres O, Thomas F (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Miner 36:369–379

    Article  CAS  Google Scholar 

  • Vogt T, Clauer N, Larqué P (2010) Impact of climate and related weathering processes on the authigenesis of clay minerals: examples from circum-Baikal region, Siberia. Catena 80:53–64

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  CAS  Google Scholar 

  • White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291

    Article  CAS  Google Scholar 

  • Whitney D, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  CAS  Google Scholar 

  • Williams JZ, Bandsra JZ, Pollard D, Brantley SL (2010) The temperature dependence of feldspar dissolution determined using a coupled weathering-climate model for Holocene-aged loess soils. Geoderma 156:11–19

    Article  CAS  Google Scholar 

  • Yershov ED (ed) (1998) General geocryology. Cambridge University Press, Cambridge

    Google Scholar 

  • Zanelli R, Egli M, Mirabella A, Giaccai A, Abdelmoula M (2007) Vegetation effects on pedogenetic forms of Fe, Al and Si and on clay minerals in soils in southern Switzerland and northern Italy. Geoderma 141:119–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The XRD measurements of the soil and rock samples were carried out at the X-ray Diffraction Centre of the St. Petersburg State University. This research was supported by a grant of the Scientific and Technological Cooperation Programme Switzerland–Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Egli.

Additional information

Responsible editor: Arnaud Temme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egli, M., Lessovaia, S.N., Chistyakov, K. et al. Microclimate affects soil chemical and mineralogical properties of cold alpine soils of the Altai Mountains (Russia). J Soils Sediments 15, 1420–1436 (2015). https://doi.org/10.1007/s11368-013-0838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-013-0838-4

Keywords

Navigation