Skip to main content
Log in

Productive behavior in growing kid goats and methane production with the inclusion of chokecherry leaf (Prunus salicifolia)

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Currently for the reduction of methane (CH4) emissions are using fodder rich in condensed tannins, however, not yet known exactly how they act in the rumen is not yet clear. The objective of this study was to evaluate the effect of the inclusion of leaves of Prunus salicifolia (PS, 0%, 15%, and 30%) on the productive behavior of growing kid goats, methane production, nutritional value, fermentation, and ruminal digestibility through an in vivo and in vitro study was performed. Diets were administered ad libitum to 6 Saanen kids with live weight (LW) of 12.25 ± 2.25 kg. Three levels of inclusion were used in a diet based on ground corn grain, soybean meal, corn stover, and oat hay in substitution with P. salicifolia leaves. The in vivo productive behavior was determined, as well as the fermentation kinetics, in vitro gas production, CH4 and hydrogen (H2) in an in vitro system was determined. For the in vivo study, we used a 3 × 3 Latin square design in in vivo study and an analysis of variance with three replications for in vitro gas production. The inclusion of 30% increased (P = 0.0011) dry matter intake (DMI 589.33 g/day) compared to the control group (418.80 g/day). The highest N excretion (feces and urine) (P < 0.001) was for T0, in addition to presenting a negative nitrogen balance compared with T15 and T30. The production of CH4 (mM)/g DM incubated, and CH4 (mM)/g DM fermented, CH4 (mM/day), and H2 was lower (P < 0.05) in T30 than T0 and T15. CH4 (mM)/day was lower (P < 0.036) in T130 (283 mM/day) compared with T0 (407 mM/day) P. salicifolia is a forage that helps to reduce the production of methane and can be included in the diets of growing kid goats in amounts less than 30% without affecting production performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, N., Kamra, D.N., Chatterjee, P.N., Kumar, R. and Chaudhary, L.C., 2008. In vitro Methanogenesis, Microbial Profile and Fermentation of Green Forages with Buffalo Rumen Liquor as Influenced by 2-Bromoethanesulphonic Acid. Asian-Aust. Journal of Animal Science. 21(6), 818 – 823.

    CAS  Google Scholar 

  • Ahmed, V.U., Perveen, S. and Bano, S. 1990. Saponin from the leaves of Guaiacum officinale. Phytochemistry 29: 3287–3290.

    Google Scholar 

  • Albores-Moreno, S., Alayón-Gamboa, J.A., Miranda-Romero, L.A. Alarcón-Zúñiga, B., Jiménez-Ferrer, G., Ku-Vera, J. C., & Piñeiro-Vázquez, A. T., 2019. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Tropical Animal Health and Production. 51, 893–904. https://doi.org/10.1007/s11250-018-1772-7

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Rivero, E., Martínez-Campos, A.R., Castelán-Ortega, O.A., Ríos-Quezada, J., Pacheco-Ortege, Y., Estrada-Flores, J., 2012. Methane production utilizing taniferous plants as substrate in ruminal fermentation in vitro and effect of phenolic extracts on ruminal microflora. Tropical and Subtropical Agroecosystems 15, 301–312.

    Google Scholar 

  • Animut, G., Puchala, R., Goetsch, A.L., Patra, A.K., Sahlu, T., Varel, V.H., Wells, J., 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Animal Feed Science Technology, 144, 212-227

    CAS  Google Scholar 

  • AOAC (Association of Official Analytic Chemist) (1990). Official Methods of Analysis, 15th ed. Association of Official Analytic Chemist, Washington, DC, USA, pp 1094

    Google Scholar 

  • Archimède, H., Eugène, M., Marie-Magdeleine, C., Boval, M., Martin, C., Morgavi, D.P., Lecomte, P., Doreau, M., 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology 166–167, 59–64

    Google Scholar 

  • Assoumaya, C., Sauvant, D., Archimède, H., 2007.Comparative study of ingestion and digestion of tropical and temperate forage. INRA Productions Animals 20,383-92

    Google Scholar 

  • Beauchemin, K.A., McGinn, S.M., Martinez, T.F., McAllister, T.A., 2007.Use of condensed tannins extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science 85, 1990–1996

    CAS  PubMed  Google Scholar 

  • Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., Enishi, O., Kurihara, M. 2009. Difference in nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. Journal of Dairy Science 92, 5512–5522.

    CAS  PubMed  Google Scholar 

  • Bodas, R., López, S., Fernández, M., García-González, R., Wallace, R.J., González, J.S., 2009. Phytogenic additives to decrease in vitro ruminal methanogenesis. Options Mediterranees. 85, 279–283

    Google Scholar 

  • Bonilla-Cárdenas, J. A., Lemus-Flores, C., Montaño-Gómez, M. F., González-Vizcarra, V. M., Ly-Carmenatti, J. 2012. Fermentación ruminal, digestibilidad y producción de metano en ovinos alimentados con cuatro niveles de rastrojo de maíz. Tropical and Subtropical Agroecosystems 15 (3), 499–509.

    Google Scholar 

  • Castañeda-Serrano, R.D., Piñeros-Varon, R., Velez-Giraldo, A., 2017. Tropical tree fodder in shheep (Ovis aries) feeding : intake,, digestibility and balance nitrogen. Boletin Cientifico Centro de Museos, Museo de Historia Natural Universidad de Caldas 22(1), 58-68

    Google Scholar 

  • Cowan, M. M., 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12, 564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado, D.C., Galindo, J., Ibett, J.C.O., Dominguez, M., Dorta, N., 2013. Suplementación con follaje de L. leucocephala. Su efecto en la digestibilidad aparente de nutrientes y producción de metano en ovinos. Revista Cubana de Ciencia Agrícola 47,267-271

    Google Scholar 

  • Deuri, P., Sood, N., Wadhwa, M. Bakshi, M.P.S., Salem, A.Z.M.2019. Screening of tree leaves for bioactive components and their impact on in vitro fermentability and methane production from total mixed ration. Agroforestry System doi:https://doi.org/10.1007/s10457-019-00374-8

  • Dey, A., De, P. S., & Gangopadhyay, P. K. 2016. Black gram (Vigna Mungo L.) foliage supplementation to crossbred cows: effects on feed intake, nutrient digestibility and milk production. Asian-Australasian Journal of Animal Sciences, 30(2), 187–191. doi:https://doi.org/10.5713/ajas.16.0286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Meccawi, S., Kam, M., Brosh, A., Degen, A.A., 2009. Energy intake, heat production and energy and nitrogen balances of sheep and goats fed wheat straw as a sole diet. Livestock Science 125, 88-91

    Google Scholar 

  • Fagundes, G.M., Modesto, E.C., Fonseca, C.E.M., Lima, H.R.P., Muir, J.P., 2014. Intake, digestibility and milk yield in goats fed Flemingia macrophylla with or without polyethylene glycol. Small Ruminant Research 116, 88–93

    Google Scholar 

  • Forbes, J.M., 1986. Dietary factors affecting intake. In The voluntary feed intake of farm animals. (Ed. JM Forbes) Butterworths: London. pp. 85–11

    Google Scholar 

  • Goel, G., Makkar, H.P.S., Becker, K., 2008.Effects of Sesbania sesban and Carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science and Technology 147, 72–89

    CAS  Google Scholar 

  • González Ronquillo, M., Fondevila, M., Barrios Urdaneta, A., Newman, Y., 1998. In vitro gas production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting interval, the level of nitrogen fertilization and the season of growth. Animal Feed Science and Technology 72, 19-32

    Google Scholar 

  • Grainger, C., Clarke, T., Auldist, M. J., Beauchemin, K. A., McGinn, S. M., Waghorn, G. C., & Eckard, R. J.,2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Canadian Journal of Animal Science 89(2), 241–251. https://doi.org/10.4141/cjas08110

    Article  CAS  Google Scholar 

  • Harper, M.T., Oh, J., Giallongo, F., Roth, G.W., Hristov, A.N., 2017. Inclusion of wheat and triticale silage in the diet of lactating dairy cows. Journal of Dairy Science 100, 1-13

    Google Scholar 

  • Her, Yg, Boote, K.J., Migliaccio, K.W., Fraisse, C., Letson, D., Mbuya, O., Anadhi, A., Chi, H., Ngatia, L., Asseng, S. 2017. Climate Change Impacts and Adaptation in Florida’s Agriculture. Florida's Climate: Changes, Variations, & Impacts. Retrieved from http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1515509652_586ba572

  • Hu, W., Liu, J., Wu, Y., Guo, Y and Ye, J., 2006. Effects of tea saponins o in vitro ruminal fermentation and growth performance in growing Boer goats, Archives of Animal Nutrition, 60(1), 89-97

    CAS  PubMed  Google Scholar 

  • Hussein, G., Nakamura, N., Meselhy, M.R., Hattori, M., 1999.Phenolic from Maytenus senegalensis. Phytochemistry 50: 689–694

    CAS  Google Scholar 

  • INEGI. 2000. Síntesis geográfica, nomenclatura y anexo cartográfico del Estado de México. Instituto Nacional de Estadística, Geografía e Informática, México, DF.

    Google Scholar 

  • IPCC., 2001. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories Chapter 5 (Waste). Available at http://www.ipcc-nggip.iges.or.jp/public/gp/english, accessed 11-10-2019

  • Kara, K., Güçlü, B.K., Baytok, E., 2015. Comparison of nutrient composition and anti-methanogenic properties of different Rosaceae species. Journal of Animal and Feed Sciences 24, 308–314

    Google Scholar 

  • Kaya, E., Canbolat, O., Atalay, A.I., Kur, O., Kamalak, A. 2016. Potential nutritive value and methane production of pods, seed and senescent leaves of Gleditsia triacanthos trees. Livestock Research for Rural Development 28 (7), 123.

    Google Scholar 

  • Krishnamoorthy, U., Muscato, T.V., Sniffen, C.J. and Van Soest, P.J., 1982. Nitrogen fractions in selected feedstuffs. Journal of Dairy Science 65: 217–255.

    CAS  Google Scholar 

  • Krishnamoorthy, U., Soller, H., Menke, K.H., 1991. A comparative study on rumen fermentation or energy supplements in vitro. Journal of Animal Physiology and Animal Nutrition 65, 28-35

    CAS  Google Scholar 

  • Licitra, G., Hernandez, T.M.,Van Soest, P.J. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347-358.

    Google Scholar 

  • Lila, Z.A., Mohamed, N., Kanda, S., Kamada, T and Itabashi, H., 2003.Effect of Sarsaponin on Ruminal Fermentation with particular reference to the methane production in vitro, Journal Dairy Science, 85 (10), 3330-336.

    Google Scholar 

  • Lopez S. and Newbold C.J. 2007. In vitro and in situ techniques for estimating digestibility, H.P.S. Makkar and P.E. Vercoe (eds.), Measuring Methane Production from Ruminants, 1–13. In. IAEA. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Makkar, H.P.S., Vercoe, P.E., 2007. Measurement of methane production from ruminants. (Springer: Dordrecht). https://doi.org/10.1007/978-1-4020-6133-2

    Book  Google Scholar 

  • Min, B.R., Solaiman, S., Terrill, T., Ramsay, A., Mueller-Harvey, I., 2015. The effects of tannins-containing ground pine bark diet upon nutrient digestion, nitrogen balance, and mineral retention in meat goats. Journal of Animal Science and Biotechnology 6, 1–18 https://doi.org/10.1186/s40104-015-0020-5.

    Article  CAS  Google Scholar 

  • Moss, A.R., Jounany, J.P., Neewbold, J.,2000. Methane production by ruminants: Its Contribution to Global warming. Annales Zootechnie 49, 231–253

    CAS  Google Scholar 

  • NRC. National Research Council. 2007. Nutrient Requirements of Small Ruminants. Sheep, Goats, Cervids, and New World Camelids. 7th rev. ed. Washingthon. National Academic Press. Pp 362

    Google Scholar 

  • Osakwe, I.I., Steingass, H., 2006. Ruminal fermentation and nutrient digestion in West African Dwarf (WAD) sheep fed Leucaena leucocephala supplemental diets. Agroforestry Systems 67,129-133

    Google Scholar 

  • Piñeiro-Vázquez, A.T., Canul-Solís, J.R., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F., Solorio-Sánchez, F.J., Ku-Vera, J.C., 2015. Potential of condensed tannins for the reduction of emissions of enteric methane and their effect on ruminant productivity. Archivos de Medicina Veterinaria 47, 263-272

    Google Scholar 

  • Piñeiro-Vázquez, A.T., Canul-Solis, J.R., Casanova-Lugo, F., Chay-Canul, A.J., Ayala-Burgos, A.J., Solorio-Sánchez, F.J., Aguilar-Pérez, CF., Ku-Vera, JC., 2017a. Emisión de metano en ovinos alimentados con Pennisetum purpureum y árboles que contienen taninos condensados. Revista Mexicana de Ciencias Pecuarias 8(2),111-119 https://doi.org/10.22319/4401

    Article  Google Scholar 

  • Piñeiro-Vázquez, A.T., Jiménez-Ferrer, G.O., Chay-Canul, A.J., Casanova-Lugo, F., Díaz-Echeverría, V.F., Ayala-Burgos, A.J., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F., Ku-Vera, J.C., 2017b. Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Animal Feed Science and Technology 228, 194–201 https://doi.org/10.1016/j.anifeedsci.2017.04.009

    Article  CAS  Google Scholar 

  • Piñeiro-Vázquez, A.T., Jiménez-Ferrer, G., Alayon-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F., Ku-Vera, J.C., 2018a. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. Tropical Animal Health and Production 50, 29–36 DOI https://doi.org/10.1007/s11250-017-1396-3

    Article  PubMed  Google Scholar 

  • Piñeiro-Vázquez, A.T., Canul-Solís, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A. J., Aguilar-Pérez, C.F., Ku-Vera, J.C., 2018b. Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. Asian-Australasian Journal of Animal Science https://doi.org/10.5713/ajas.17.0192

  • Puchala, R., Animut, G., Patra, A.K., Detweiler, G.D., Wells, J.E., Varel, V.H., Sahlu, T., 2012. Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Animal Feed Science Technology 175, 76–84

    CAS  Google Scholar 

  • Rira, M., Morgavi, D.P., Archimède, H., Marie-Magdeleine, C., Popova, M., Bousseboua, H., Doreau, M., 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. Journal of Animal Science 93,334-347

    CAS  PubMed  Google Scholar 

  • Samkol, P., Sath, K., Patel, M., Seng, M., Holtenius, K. 2018. Effets of supplementing low-quality hay with groundnut foliage and cassava tops on feed intake, apparent digestibility and rumen fermentation in crossbreed cattle. Animal production Science 59(9), 1660-1666

    Google Scholar 

  • SAS, Statistical Analysis System Institute. 2002. Statistical Analysis System Institute Inc. SAS/STAT User’s Guide, Cary, North Carolina, U.S.A

    Google Scholar 

  • Sinclair, K.D., Garnsworthy, P.C., Mann, G.E., Sinclair, L.A., 2014. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal 8, 262–274.

    CAS  PubMed  Google Scholar 

  • Soltan, Y.A., Morsy, A.S., Sallam, S.M.A., Lucas, R.C., Louvandini, H., Kreuzer, M., Abdalla, A.L., 2013. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Archives of Animal Nutrition 67:169-184

    CAS  PubMed  Google Scholar 

  • Steel, R.G., Torrie, D.J.H., and Dickey, D.A., 1997. Principles and Procedures of Statistics. A biometrical approach. 3rd Ed., McGraw Hill Book Co., New York, USA

    Google Scholar 

  • Szumacher-Strabel, M., Zmora, P., Roj, E., Stochmal, A., Pers-Kamczyc, E., Urbańczyk, A., Oleszek, W., Lechniak, D., Cieślak, A., 2011. The potential of the wild dog rose (Rosa canina) to mitigate in vitro rumen methane production. Journal Animal Feed Science 20, 285–299

    Google Scholar 

  • Tan, H.Y., Sieo, C.C., Abdullah, N., Liang, J.B., Huang, X.D., Ho, Y.W., 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology 169,185–193

    CAS  Google Scholar 

  • Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N., Attwood ,G.T., Sivakumaran, S., 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology 123, 403–419

  • Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B., and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185–197

    Google Scholar 

  • Tiemann, T.T., Lascano, C.E., Wettstein, H.R., Mayer, A.C., Kreuze, M., Hess, H.D., 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2, 790–799

    CAS  PubMed  Google Scholar 

  • Van Soest, P.J., Robertson, J.B. and Lewis, B.A.,1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583

    PubMed  Google Scholar 

Download references

Funding

The M in C. Liz Robles was benefited by a grant of the Conacyt during its studies of Doctorate, in the programa de Maestria y Doctorado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autonoma del Estado de Mexico. This project was supported by UAEMex 4335/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gonzalez-Ronquillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles Jimenez, L.E., Ruiz Perez, J.A., Nicolas, D.L. et al. Productive behavior in growing kid goats and methane production with the inclusion of chokecherry leaf (Prunus salicifolia). Trop Anim Health Prod 52, 1257–1267 (2020). https://doi.org/10.1007/s11250-019-02124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02124-5

Keywords

Navigation