Skip to main content
Log in

Paradoxes and paradigms: on ambisaline ions of nitrogen

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ambisaline ions can be defined as species that exist as cations and as anions in appropriate salts although admittedly not necessarily with well-known or commonly existing counterions. In the present paper we review ambisaline ions of nitrogen as present in solid state salts and add a brief thermochemical commentary. We open our discussion with all nitrogen species composed of solely nitrogen and extend it to polynitrogen ambisaline species consisting of nitrogen(s) with hydrogen (or other univalent groups) affixed to these nitrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards KF, Liebman JF (2011). Int J Chem Model 3:213–223

    CAS  Google Scholar 

  2. Edwards KF, Liebman JF (2012) In: Putz MV (ed) Advances in chemical modeling 3:67–77. New York Advances in Molecular Modeling, Nova Sci Publ

    Google Scholar 

  3. Moore CE (1970) Natl Stand Ref Data Ser (US Natl Bur Stand) NSRDS-NBS 34:1–8

  4. Chhetri P, Ackermann D, Backe H, Block M, Cheal B, Droese C, Düllmann CE, Even J, Ferrer R, Giacoppo F, Götz S, Heßberger FP, Huyse M, Kaleja O, Khuyagbaatar J, Kunz P, Laatiaoui M, Lautenschläger F, Lauth W, Lecesne N, Lens L, Minaya Ramirez E, Mistry AK, Raeder S, Van Duppen P, Walther T, Yakushev A, Zhang Z (2018). Phys Rev Lett 120:263003

    CAS  PubMed  Google Scholar 

  5. Sato TK, Asai M, Borschevsky A, Beerwerth R, Kaneya Y, Makii H, Mitsukai A, Nagame Y, Osa A, Toyoshima A, Tsukada K, Sakama M, Takeda S, Ooe K, Sato D, Shigekawa Y, Ichikawa S, Dullmann CE, Grund J, Renisch D, Kratz JV, Schadel M, Eliav E, Kaldor U, Fritzsche S, Stora T (2018). J Am Chem Soc 140:14609–14613

    CAS  PubMed  Google Scholar 

  6. Andersen T, Haugen HK, Hotop H (1999). J Phys Chem Ref Data 28:1511–1533

    CAS  Google Scholar 

  7. Wagman DD, Evans WH, Parker VB, Schumm HR, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem ref data 11. Suppl 2:1–392

    Google Scholar 

  8. National Institute of Standards and Technology (NIST) Chemistry WebBook (2018) NIST, Gaithersburg. https://webbook.nist.gov.

  9. Shatalov KI, Solov'ev SN (2011). Russ J Phys Chem A 85:331–333

    CAS  Google Scholar 

  10. Eriks K (1950). Chem Weekbl 46:831–833

    CAS  Google Scholar 

  11. McClelland BW, Hedberg L, Hedberg K, Hagen K (1983). J Am Chem Soc 105:3789–3793

    CAS  Google Scholar 

  12. Perold GW (1956). S Afr Ind Chem 10:74–76

    CAS  Google Scholar 

  13. Parts L, Miller Jr JT (1965). J Chem Phys 43:136–139

    CAS  Google Scholar 

  14. Galliker B, Kissner R, Nauser T, Koppenol WH (2009). Chem-Eur J 15:6161–6168

    CAS  PubMed  Google Scholar 

  15. Kerkines ISK, Papakondylis A, Mavridis A (2002). J Phys Chem A 106:4435–4442

    CAS  Google Scholar 

  16. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999). Angew Chem Int Ed 38:2004–2009

    CAS  Google Scholar 

  17. Haiges R, Schneider S, Schroer T, Christe KO (2004). Angew Chem Int Ed 43:4919–4924

    CAS  Google Scholar 

  18. Bernhardi I, Drews T, Seppelt K (1999). Angew Chem Int Ed 38:2232–2233

    CAS  Google Scholar 

  19. Redeker FA, Frenio A, Beckers H, Riedel S (2020). Chem Eur J 26:1763–1767

    CAS  PubMed  Google Scholar 

  20. Zberecki K, Adamowicz L, Wierzbicki M (2009). Phys Status Solidi B 246:2270–2278

    CAS  Google Scholar 

  21. Dale SG, Johnson ER (2017). Phys Chem Chem Phys 19:12816–12825

    CAS  PubMed  Google Scholar 

  22. Laniel D, Weck G, Loubeyre P (2018). Inorg Chem 57:10685–10693

    CAS  PubMed  Google Scholar 

  23. Spiker Jr RC, Andrews L, Trindle C (1972). J Am Chem Soc 94:2401–2406

    CAS  Google Scholar 

  24. Schneider SB, Frankovsky R, Schnick W (2012). Angew Chem Int Ed 51:1873–1875

    CAS  Google Scholar 

  25. Schneider SB, Seibald M, Deringer VL, Stoffel RP, Frankovsky R, Friederichs GM, Laqua H, Duppel V, Jeschke G, Dronskowski R, Schnick W (2013). J Am Chem Soc 135:16668–16679

    CAS  PubMed  Google Scholar 

  26. Olah GA, Herges R, Laali K, Segal GA (1986). J Am Chem Soc 108:2054–2057

    CAS  Google Scholar 

  27. Stoyanov ES, Stoyanova IV (2017). Phys Chem Chem Phys 19:32733–32740

    CAS  PubMed  Google Scholar 

  28. Neilson GW, Symons MCR (1972) J Chem Soc Faraday Trans 2 68:1772–1777

  29. Holfter H, Klapötke TM, Schulz A (1996). Eur J Solid State Inorg Chem 33:855–864

    CAS  Google Scholar 

  30. Holfter H, Klapötke TM, Schulz A (1997). Propellants Explos Pyrotech 22:51–54

    CAS  Google Scholar 

  31. Klapötke TM, Schulz A, White PS, Crawford MJ (1998). Heteroatom Chem 9:129–132

    Google Scholar 

  32. Klapötke TM, Deakyne CA, Liebman JF (2011). Struct Chem 22:189–191

    Google Scholar 

  33. Dyke JM, Jonathan NBH, Lewis AE, Morris A (1982). Mol Phys 47:1231–1240

    CAS  Google Scholar 

  34. Bartlett N, Lohmann DH (1962) J Chem Soc 5253–5261

  35. Bartlett N, Lohmann DH (1962) Proc Chem Soc 115–116

  36. Schatte G, Willner H (1991). Z Naturforsch B J Chem Sci 46:483–489

    CAS  Google Scholar 

  37. Bent HA (1960). J Chem Educ 37:616–624

    CAS  Google Scholar 

  38. Bent HA (1961). Chem Rev 61:275–311

    CAS  Google Scholar 

  39. Aue DH, Webb HM, Bowers MT (1975). J Am Chem Soc 97:4137–4139

    CAS  Google Scholar 

  40. LeBlanc FA, Decken A, Cameron TS, Passmore J, Rautiainen JM, Whidden TK (2017). Inorg Chem 56:974–983

    CAS  PubMed  Google Scholar 

  41. Glavincevski B, Brownstein S (1981). J Inorg Nucl Chem 43:1827–1829

    CAS  Google Scholar 

  42. Glavincevski B, Brownstein S (1981). Inorg Chem 20:3580–3581

    CAS  Google Scholar 

  43. Haiges R, Boatz JA, Bau R, Schneider S, Schroer T, Yousufuddin M, Christe KO (2005). Angew Chem Intl Ed 44:1860–1865

    CAS  Google Scholar 

  44. Savchenko EV, Khyzhniy IV, Uyutnov SA, Barabashov AP, Gumenchuk GB, Beyer MK, Ponomaryov AN, Bondybey VE (2015). J Phys Chem A 119:2475–2482

    CAS  PubMed  Google Scholar 

  45. Shuskus AJ, Young CG, Gilliam OR, Levy PW (1960). J Chem Phys 33:622–623

    CAS  Google Scholar 

  46. Willis JS, Pella P (1982). J Chem Phys 77:1175–1178

    CAS  Google Scholar 

  47. Wilson WW, Vij A, Vij V, Bernhardt E, Christe KO (2003). Chem Eur J 9:2840–2844

    CAS  Google Scholar 

  48. Haiges R, Schneider S, Schroer T, Christe KO (2004). Angew Chem Int Ed 43:4919–4924

    CAS  Google Scholar 

  49. Zhang C, Sun C, Hu B, Yu C, Lu M (2017). Science 355:374–376

    CAS  PubMed  Google Scholar 

  50. Zhou M, Sui M, Shi X, Zhao Z, Guo L, Liu B, Liu R, Wang P, Liu B (2020). J Phys Chem C 124:11825–11830

    CAS  Google Scholar 

  51. Yang C, Zhang C, Zheng Z, Jiang C, Luo J, Du Y, Hu B, Sun C, Christe KO (2018). J Am Chem Soc 140:16488–16494

    CAS  PubMed  Google Scholar 

  52. Xu Y, Lin Q, Wang P, Lu M (2018). Chem Asian J 13:924–928

    CAS  PubMed  Google Scholar 

  53. Hiraoka K, Nakajima G (1988). J Chem Phys 88:7709–7714

    CAS  Google Scholar 

  54. Weinberger N, Postler J, Scheier P, Echt O (2017). J Phys Chem C 121:10632–10637

    CAS  Google Scholar 

  55. Workentin MS, Wagner BD, Negri F, Zgierski MZ, Lusztyk J, Siebrand W, Wayner DDM (1995). J Phys Chem 99:94–101

    CAS  Google Scholar 

  56. Michalski R, Sikora A, Adamus J, Marcinek A (2010). J Phys Chem A 114:861–866

    CAS  PubMed  Google Scholar 

  57. Foner SN, Hudson RL (1981). J Chem Phys 74:5017–5021

    CAS  Google Scholar 

  58. Neumark DM, Lykke KR, Anderson T, Lineberger WC (1985). J Chem Phys 83:4364–4373

    CAS  Google Scholar 

  59. Sichla T, Jacobs H (1996). Z Anorg Allg Chem 622:2079–2082

    CAS  Google Scholar 

  60. Altshuller AP (1955). J Chem Phys 23:1561–1562

    CAS  Google Scholar 

  61. Wu H (2008). J Am Chem Soc 130:6515–6522

    CAS  PubMed  Google Scholar 

  62. Hansen N, Wodtke AM, Komissarov AV, Morokuma K, Heaven MC (2003). J Chem Phys 118:10485–10493

    CAS  Google Scholar 

  63. Frost DC, MacDonald CB, McDowell CA, Westwood NPC (1980). Chem Phys 47:111–124

    CAS  Google Scholar 

  64. Greci L, Castagna R, Carloni P, Stipa P, Rizzoli C, Righi L, Sgarabotto P (2003). Org Biomol Chem 1:3768–3771

    CAS  PubMed  Google Scholar 

  65. Craig AD (1964). Inorg Chem 3:1628–1633

    CAS  Google Scholar 

  66. Belter RK (2011). J Fluor Chem 132:961–964

    CAS  Google Scholar 

  67. Walter RI (1955). J Am Chem Soc 77:5999–6002

    CAS  Google Scholar 

  68. Svanholm U, Parker VD (1974). J Am Chem Soc 96:1234–1236

    CAS  Google Scholar 

  69. Loutellier A, Manceron L, Perchard JP (1990). Chem Phys 146:179–193

    CAS  Google Scholar 

  70. Wu J, Polce MJ, Wesdemiotis C (2001). Int J Mass Spectrom 204:125–131

    CAS  Google Scholar 

  71. Kuan T, Jiang R, Su T (1990). J Chem Phys 92:2553–2558

    CAS  Google Scholar 

  72. Yamamoto H, Miyaoka H, Hino S, Nakanishi H, Ichikawa T, Kojima Y (2009). Int J Hydrog Energy 34:9760–9764

    CAS  Google Scholar 

  73. Zhang T, Isobe S, Matsuo M, Orimo S, Wang Y, Hashimoto N, Ohnuki S (2015). ACS Catal 5:1552–1555

    CAS  Google Scholar 

  74. Sandman DJ, Richter AF (1979). J Am Chem Soc 101:7079–7080

    CAS  Google Scholar 

  75. Sandman DJ, Richter AF, Warner DE, Fekete GT (1980). Mol Cryst Liq Cryst 60:21–35

    CAS  Google Scholar 

  76. Hoch C, Simon A (2006). Z Anorg Allg Chem 632:2288–2294

    CAS  Google Scholar 

  77. Gillespie RJ, Granger P, Morgan KR, Schrobilgen GJ (1984). Inorg Chem 23:887–891

    CAS  Google Scholar 

  78. Redko MY, Vlassa M, Jackson JE, Misiolek AW, Huang RH, Dye JL (2002). J Am Chem Soc 124:5928–5929

    CAS  PubMed  Google Scholar 

  79. Xu S, Nilles JM, Hendricks JH, Lyapustina SA, Bowen Jr KH (2002). J Chem Phys 117:5742–5747

    CAS  Google Scholar 

  80. Snodgrass JT, Coe JV, Freidhoff CB, McHugh KM, Bowen KH (1988). Faraday Discuss Chem Soc 86:241–256

    CAS  Google Scholar 

  81. Schneider S, Haiges R, Schroer T, Boatz J, Christe KO (2004). Angew Chem Int Ed 43:5213–5217

    CAS  Google Scholar 

  82. Bonnefoi J, Hebd CR (1898). Seances Acad Sci 127:367–369

    CAS  Google Scholar 

  83. Nishikida K, Williams F (1975). J Am Chem Soc 97:7166–7168

    CAS  Google Scholar 

  84. Hasegawa A, Hudson RL, Kikuchi O, Nishikida K, Williams F (1981). J Am Chem Soc 103:3436–3440

    CAS  Google Scholar 

  85. Li L, Liu X, Wang X (1999). Chin Chem Lett 10:321

    CAS  Google Scholar 

  86. Olah GA, Burrichter A, Rasul G, Prakash GKS (1997). J Am Chem Soc 119:4594–4598

    CAS  Google Scholar 

  87. Grohmann A, Riede J, Schmidbaur H (1990). Nature London UK 345:140–142

    CAS  Google Scholar 

  88. Schier A, Grohmann A, Lopez-de-Luzuriaga JM, Schmidbaur H (2000). Inorg Chem 39:547–554

    CAS  PubMed  Google Scholar 

  89. Arafat A, Baer J, Huffman JC, Todd LJ (1986). Inorg Chem 25:3757–3761

    CAS  Google Scholar 

  90. Schneider L, Englert U, Paetzold P (1994). Z Anorg All Chem 620:1191–1193

    CAS  Google Scholar 

  91. Lomme P, Meyer F, Englert U, Paetzold P (1995). Chem Ber 128:1225–1229

    CAS  Google Scholar 

  92. Field JE, Hill TJ, Venkataraman D (2003). J Org Chem 68:6071–6078

    CAS  PubMed  Google Scholar 

  93. Yan C, Takeshita M, Nakatsuji J, Kurosaki A, Sato K, Shang R, Nakamoto M, Yamamoto Y, Adachi Y, Furukawa K, Ryohei K, Nakano M (2020). Chem Sci 11:5082–5088

    CAS  Google Scholar 

  94. Romming C (1959). Acta Chem Scand 13:1260–1261

    CAS  Google Scholar 

  95. Ullrich R, Grewer T (1993). Thermochim Acta 225:201–211

    CAS  Google Scholar 

  96. Okazaki T, Laali KK, Bunge SD, Adas SK (2014) Eur J Inorg Chem 1630–1644

    Google Scholar 

  97. Groth P (1981). Acta Chem Scand Ser A 35:541–544

    Google Scholar 

  98. Stiles M, Burckhardt U, Haag A (1962). J Org Chem 27:4715–4716

    CAS  Google Scholar 

  99. Lormann MEP, Dahmen S, Avemaria F, Lauterwasser F, Brase S (2002) Synlett 915–918

  100. Moy D, Young II AR (1965). J Am Chem Soc 87:1889–1892

    CAS  Google Scholar 

  101. Christe KO, Dixon DA, Grant DJ, Haiges R, Tham FS, Vij A, Vij V, Wang T, Wilson WW (2010). Inorg Chem 49:6823–6833

    CAS  PubMed  Google Scholar 

  102. Lapere KML, Kettner M, Watson PD, McKinley AJ, Wild DA (2015). J Phys Chem A 119:9722–9728

    CAS  PubMed  Google Scholar 

  103. Papakondylis A (2016). J Phys Chem A 120:9660–9666

    CAS  PubMed  Google Scholar 

  104. Noeth H, Sachdev H, Schmidt M, Schwenk H (1995). Chem Ber 128:105–113

    CAS  Google Scholar 

  105. Marsh FD, Hermes ME (1965). J Am Chem Soc 87:1819–1820

    CAS  Google Scholar 

  106. Wang W, Tan G, Feng R, Fang Y, Chen C, Ruan H, Zhao Y, Wang X (2020). Chem Commun 56:3285–3288

    CAS  Google Scholar 

  107. Abbott LC, Batchelor SN, Lindsay Smith JR, Moore JN (2009). J Phys Chem A 113:6091–6103

    CAS  PubMed  Google Scholar 

  108. Slough W (1963). Trans Faraday Soc 59:2445–2450

    CAS  Google Scholar 

  109. Young II AR, Moy D (1967). Inorg Chem 6:178–179

    CAS  Google Scholar 

  110. Qureshi AM, Aubke F (1970). Can J Chem 48:3117–3123

    CAS  Google Scholar 

  111. Christe KO, Schack CJ (1978). Inorg Chem 17:2749–2754

    CAS  Google Scholar 

  112. Nabiev SS, Sokolov VB, Chaivanov BB (2012). Russ Chem Bull 61:497–505

    CAS  Google Scholar 

  113. Grant DJ, Wang T, Vasiliu M, Dixon DA (2011). Inorg Chem 50:1914–1925

    CAS  PubMed  Google Scholar 

  114. Johnson FA (1966). Inorg Chem 5:149–150

    CAS  Google Scholar 

  115. Goubeau J, Kull U (1962). Z Anorg Allg Chem 316:182–189

    CAS  Google Scholar 

  116. Kauffmann T, Kosel C, Wolf D (1962). Chem Ber 95:1540–1551

    CAS  Google Scholar 

  117. Kauffmann T, Rauch E, Schulz J (1973). Chem Ber 106:1612–1617

    CAS  Google Scholar 

  118. Baumann W, Michalik D, Reiss F, Schulz A, Villinger A (2014). Angew Chem Int Ed 53:3250–3253

    CAS  Google Scholar 

  119. Cauquis G, Genies M (1971) Tetrahedron Lett 4677–4680

  120. Zhao Y, Bordwell FG, Cheng J, Wang D (1997). J Am Chem Soc 119:9125–9129

    CAS  Google Scholar 

  121. Nelsen SF (1966). J Am Chem Soc 88:5666–5667

    CAS  Google Scholar 

  122. Brunning WH, Michejda CJ, Romans DJ (1967) Chem Commun 11–12

  123. Nelsen SF, Blackstock SC, Frigo TB (1984) J Am Chem Soc106:3366–3367

  124. Nelsen SF, Wang Y (1994). J Org Chem 59:3082–3090

    CAS  Google Scholar 

  125. Delaire J, Cordier P, Belloni J, Billiau F, Delcourt MO (1976). J Phys Chem 80:1687–1690

    CAS  Google Scholar 

  126. Seddon WA, Fletcher JW, Sopchyshyn FC (1976). Can J Chem 54:2807–2812

    CAS  Google Scholar 

  127. Zhang Y, Tang Q, Luo M (2011). Org Biomol Chem 9:4977–4982

    CAS  PubMed  Google Scholar 

  128. Cumine F, Palumbo F, Murphy JA (2018). Tetrahedron 74:5539–5545

    CAS  Google Scholar 

  129. Jacobs H (1976). Z Anorg Allg Chem 427:1–7

    CAS  Google Scholar 

  130. Jacobs H (1971). Z Anorg Allg Chem 382:97–109

    CAS  Google Scholar 

  131. Senker J, Jacobs H, Müller M, Press W, Müller P, Mayer HM, Ibberson RM (1998). J Phys Chem B 102:931–940

    CAS  Google Scholar 

  132. Fröhling B, Kreiner G, Jacobs H (1999). Z Anorg Allg Chem 625:211–216

    Google Scholar 

  133. Jacobs H, Hadenfeldt C (1975). Z Anorg Allg Chem 418:132–140

    CAS  Google Scholar 

  134. Bouclier P, Novak A, Portier J, Hagenmuller P (1966). C R Seances Acad Sci Ser C 263:875–878

    CAS  Google Scholar 

  135. Moesges G, Hampel F, Kaupp M (1992) Schleyer PvR. J Am Chem Soc 114:10880–10889

    CAS  Google Scholar 

  136. Shida T, Kira A (1969). J Phys Chem 73:4315–4320

    CAS  Google Scholar 

  137. Sousa-Alonso A, Masaguer JR, Coto-Pardo MV (1976). Acta Cient Compostelana 13:61–68

    CAS  Google Scholar 

  138. Klapötke TM, White PS, Tornieporth-Oetting IP (1966). Polyhedron 15:2579–2582

    Google Scholar 

  139. Mazej Z, Goreshnik EA (2015). Z Anorg Allg Chem 641:1216–1219

    CAS  Google Scholar 

  140. Averbuch-Pouchot MT, Durif A (1991). Acta Crystallogr Sect C Cryst Struct Commun C47:1579–1583

    CAS  Google Scholar 

  141. Klampfer P, Benkič P, Ponikvar M, Rahten A (2003) LesarA, Jesih A. Monatsh Chem 134:1–9

    CAS  Google Scholar 

  142. Turgut G, Zora M, Odabasoglu M, Ersanli CC, Buyukgungor O (2005). Acta Crystallogr Sect C Cryst Struct Commun C61:o321–o323

    CAS  Google Scholar 

  143. Alder RW, Sessions RB (1979). J Am Chem Soc 101:3651–3652

    CAS  Google Scholar 

  144. De Backer MG, Mkadmi EB, Sauvage FX, Lelieur JP, Wagner MJ, Concepcion R, Eglin JL, Guadagnini RA, Kim J, McMills LEH, Dye JL (1994). J Am Chem Soc 116:6570–6576

    Google Scholar 

  145. Wu S, Cheng C, Hou W, Li Q, Dong D, Gao Y, Liu L, Liang B, Zhang H (2019). Tetrahedron 75:130577

    CAS  Google Scholar 

  146. Alder RW, Casson A, Sessions RB (1979). J Am Chem Soc 101:3652–3653

    CAS  Google Scholar 

  147. Virag A, Meden A, Kočevar M, Polanc S (2006). J Org Chem 71:4014–4017

    CAS  PubMed  Google Scholar 

  148. Wirschun W, Jochims JC (1997) Synthesis 233–241

  149. Matyushin YN, Kon'kova TS, Titova KV, Loginova EN, Vorob'ev AB, Lebedev YA (1981) Izv Akad Nauk SSSR Ser Khim 239–2394

  150. Beckmann E, Bahr N, Cullmann O, Yang F, Kegel M, Voegtle M, Exner K, Keller M, Knothe L, Prinzbach H (2003) Eur J. Inorg Chem:4248–4264

  151. Exner K, Heizmann M, Yang F, Kegel M, Keller M, Knothe L, Grossmann B, Heinze J, Prinzbach H (2005). Eur J Org Chem:1311–1331

  152. Mizuno A, Shuku Y, Suizu R, Matsushita MM, Tsuchiizu M, Reta Maneru D, Illas F, Robert V, Awaga K (2015). J Am Chem Soc 137:7612–7615

    CAS  PubMed  Google Scholar 

Download references

Funding

MPS received financial support from the Slovenian Research Agency (ARRS Grant P1-0045, Inorganic Chemistry and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel F. Liebman.

Ethics declarations

We did not perform any experiments when preparing this article, so neither ethics review nor informed consent was necessary.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponikvar-Svet, M., Edwards, K.F. & Liebman, J.F. Paradoxes and paradigms: on ambisaline ions of nitrogen. Struct Chem 32, 529–537 (2021). https://doi.org/10.1007/s11224-020-01659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01659-w

Keywords

Navigation