Skip to main content
Log in

Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pyrolysis characteristics and kinetics of sour cherry stalk and flesh were investigated using non-isothermal thermogravimetric analysis at five different heating rates of 5, 10, 20, 30 and 40 °C min−1. Activation energies at two different particle size ranges were determined from the experimental data using various isoconversional methods, namely Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods. Four stages were observed during the pyrolysis process in which the second and the third stage were determined as active decomposition stages. Average activation energies of sour cherry stalk with a particle size of 75–150 µm were calculated in the range of 159.0–160.5 kJ mol−1 and 118.8–141.1 kJ mol−1 at the second and the third active stage, respectively. The same type of biomass with a particle size of 150–250 µm revealed average activation energies in the range of 179.7–180.0 kJ mol−1 and 162.1–164.6 kJ mol−1 at the second and the third active stage, respectively. Average activation energies of sour cherry flesh with a particle size of 75–150 µm were calculated in the range of 136.2–160.5 kJ mol−1 and 133.7–151.2 kJ mol−1 at the second and the third active stage, respectively. The same type of biomass with a particle size of 150–250 µm resulted in average activation energies in the range of 266.1–273.9 kJ mol−1 and 179.8–197.8 kJ mol−1 at the second and the third active stage, respectively. Besides the obtained activation energy values, results demonstrated the effect of the particle size of the applied biomass on pyrolysis kinetics as well as the possibility of using sour cherry stalk and flesh as renewable feedstock for alternative energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu K, Liu J, Wu Y, et al. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol. 2014;163:18–25.

    Article  CAS  PubMed  Google Scholar 

  2. Fu S, Chen H, Yang J, et al. Kinetics of thermal pyrolysis of Eucalyptus bark by using thermogravimetric-Fourier transform infrared spectrometry technique. J Therm Anal Calorim. 2020;139:3527–35.

    Article  CAS  Google Scholar 

  3. Açıkalın K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  CAS  Google Scholar 

  4. Shah MA, Khan MNS, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018;134:2137–45.

    Article  CAS  Google Scholar 

  5. Ghosh SK. Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environ Sci. 2016;31:31–9.

    Article  Google Scholar 

  6. Sharma A, Pareek V, Zhang D. Biomass pyrolysis: a review of modelling, process parameters and catalytic studies. Renew Sust Energy Rev. 2015;50:1081–96.

    Article  CAS  Google Scholar 

  7. Açıkalın K, Karaca F. Fixed-bed pyrolysis of walnut shell: parameter effects on yields and characterization of products. J Anal Appl Pyrolysis. 2017;125:234–42.

    Article  CAS  Google Scholar 

  8. Hu Z, Chen Z, Li G, et al. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis. Bioresour Technol. 2015;194:364–72.

    Article  CAS  PubMed  Google Scholar 

  9. Soria-Verdugo A, Goos E, García-Hernando N, et al. Analysis the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and Distributed Activation Energy Model. Algal Res. 2018;32:11–29.

    Article  Google Scholar 

  10. Demirbaş A. Pyrolysis mechanisms of biomass materials. Energ Source Part A. 2009;31(13):1186–93.

    Article  CAS  Google Scholar 

  11. Di Blasi C. Modelling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34:47–90.

    Article  CAS  Google Scholar 

  12. Vimalathithan PK, Barile C, Vijayakumar CT. Investigation of kinetic triplets for thermal degradation of thermally cured vinyl ester resin systems and lifetime predictions. J Therm Anal Calorim. 2018;133:881–91.

    Article  CAS  Google Scholar 

  13. Hu M, Chen Z, Wang S, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution and iso-conversional method. Energy Convers Manage. 2016;118:1–11.

    Article  CAS  Google Scholar 

  14. He Y, Chang C, Li P, et al. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresour Technol. 2018;259:294–303.

    Article  CAS  PubMed  Google Scholar 

  15. Das P, Mondal D, Maiti S. Thermochemical conversion pathways of Kappaphycus alvarezii granules through study of kinetic models. Bioresour Technol. 2017;234:233–42.

    Article  CAS  PubMed  Google Scholar 

  16. Chen D, Shuang E, Liu L. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J Therm Anal Calorim. 2018;131:1899–909.

    Article  CAS  Google Scholar 

  17. Wojdylo A, Figiel A, Lech K, et al. Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food Bioprocess Technol. 2014;7:829–41.

    Article  CAS  Google Scholar 

  18. FAO. Food and Agriculture Organization of the United Nations. 2016. http://faostat.fao.org. Accessed 21 Aug 2019.

  19. Doymaz İ. Influence of pretreatment solution on the drying of sour cherry. J Food Eng. 2007;78:591–6.

    Article  Google Scholar 

  20. Damar İ, Ekşi A. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 2012;135:2910–4.

    Article  CAS  PubMed  Google Scholar 

  21. Sun SY, Che CY, Sun TF, et al. Evaluation of sequential inoculation of Saccharomyces cerevisiae and Oenococcus oeni strains on the chemical and aromatic profiles of cherry wines. Food Chem. 2013;138(4):2233–41.

    Article  CAS  PubMed  Google Scholar 

  22. Duran-Valle CJ, Gomez-Corzo M, Gomez-Serrano V, et al. Preparation of charcoal from cherry stones. Appl Surf Sci. 2006;252:5957–60.

    Article  CAS  Google Scholar 

  23. Olivares-Marin M, Fernandez-Gonzales C, Macias-Garcia A, et al. Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Appl Surf Sci. 2006;252:5980–3.

    Article  CAS  Google Scholar 

  24. Angin D. Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel. 2014;115:804–11.

    Article  CAS  Google Scholar 

  25. Gonzales JF, Encinar JM, Canito JL, et al. Pyrolysis of cherry stones: energy uses of the different fractions and kinetic study. J Anal Appl Pyrolysis. 2003;67:165–90.

    Article  Google Scholar 

  26. Duman G, Okutucu C, Ucar S, et al. The slow and fast pyrolysis of cherry seed. Bioresour Technol. 2011;102:1869–78.

    Article  CAS  PubMed  Google Scholar 

  27. Alper K, Tekin K, Karagöz S. Pyrolysis of agricultural residues for bio-oil production. Clean Technol Environ. 2015;17:211–23.

    Article  CAS  Google Scholar 

  28. Özsin G, Pütün AE. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag. 2017;64:315–26.

    Article  PubMed  CAS  Google Scholar 

  29. Korlesky NM, Stolp LJ, Kodali DR, et al. Extraction and characterization of Montmorency sour cherry (Prunus cerasus L.) pit oil. J Am Oil Chem Soc. 2016;93:995–1005.

    Article  CAS  Google Scholar 

  30. Gillespie GD, Everard CD, Fagan CC, et al. Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel. 2013;111:771–7.

    Article  CAS  Google Scholar 

  31. Cruz G, Rodriguez ALP, Silva DF, et al. Physical-chemical characterization and thermal behavior of cassava harvest for application in thermochemical processes. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09330-6.

    Article  Google Scholar 

  32. Chandrasekaran A, Ramachandran S, Subbiah A. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresour Technol. 2017;233:413–22.

    Article  CAS  PubMed  Google Scholar 

  33. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91:1–33.

    Article  CAS  Google Scholar 

  34. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  35. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  36. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  37. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Sympos. 1964;6(1):183–95.

    Article  Google Scholar 

  38. Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  40. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bureau Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  41. Akahira T, Sunose T. Joint convention of four electrical institutes. Sci Technol. 1971;16:22–31.

    Google Scholar 

  42. García R, Pizarro C, Lavín AG, et al. Characterization of Spanish biomass wastes for energy use. Bioresour Technol. 2012;103:249–58.

    Article  PubMed  CAS  Google Scholar 

  43. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  PubMed  Google Scholar 

  44. Ceylan S, Topcu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yuakkul D, Amornsakchai T, Saikrasun S. Effect of maleated compatibilizer on anisotropic mechanical properties, thermo-oxidative stability and morphology of styrenic based thermoplastic elastomer reinforced with alkali-treated pineapple leaf fiber. Int J Plast Technol. 2015;19(2):388–411.

    Article  CAS  Google Scholar 

  46. Brebu M, Cazacu G, Chirila O. Pyrolysis of lignin—a potential method for obtaining chemicals and/or fuels. Cell Chem Technol. 2011;45(1–2):43–50.

    CAS  Google Scholar 

  47. Lin X, Sui S, Tan S, et al. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies. 2015;8:5107–21.

    Article  CAS  Google Scholar 

  48. Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  49. Lazaridis PA, Fotopoulos AP, Karakoulia SA, et al. Catalytic fast pyrolysis of kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics. Front Chem. 2018;6:295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Li D, Briens C, Berruti F. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor—effect of bed materials. Bioresour Technol. 2015;189:7–14.

    Article  CAS  PubMed  Google Scholar 

  51. Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 2011;105:145–50.

    Article  CAS  Google Scholar 

  52. Gogoi M, Konwar K, Bhuyan N, et al. Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep. 2018;4:40–9.

    Article  Google Scholar 

  53. Alvarenga LM, Xavier TP, Barrozo MAS, et al. Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry. Waste Manag. 2016;53:68–75.

    Article  CAS  PubMed  Google Scholar 

  54. Alias NB, Ibrahim N, Hamid MKA. Pyrolysis of empty fruit bunch by thermogravimetric analysis. Energy Procedia. 2014;61:2532–6.

    Article  Google Scholar 

  55. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34(1):29–41.

    Article  CAS  Google Scholar 

  56. He Z, Xia Z, Hu J, et al. Thermal decomposition and kinetics of electrically controlled solid propellant through thermogravimetric analysis. J Therm Anal Calorim. 2020;139:2187–95.

    Article  CAS  Google Scholar 

  57. Liu H, Wang C, Zhao W, et al. Pyrolysis characteristics and kinetic modeling of Artemisia apiacea by thermogravimetric analysis. J Therm Anal Calorim. 2018;131:1783–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to The Scientific Research Project Coordination Unit of Yalova University (Project No. 2018/AP/0017) for the financial support and to DİMES Fruit Juice Company (İzmir, Turkey) for the supply of the biomass materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Gözke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gözke, G., Açıkalın, K. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. J Therm Anal Calorim 146, 893–910 (2021). https://doi.org/10.1007/s10973-020-10055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10055-9

Keywords

Navigation