Skip to main content

Advertisement

Log in

Antibacterial activity of a triclosan-containing resin composite matrix against three common oral bacteria

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study investigated the antibacterial effect of a resin composite matrix with or without incorporated triclosan (0.3 wt%) on Streptococcus mutans, Actinomyces viscosus and Lactobacillus casei. In the quantitative assay, bacterial suspensions were filled into 20-μl cavities within temporary restorative resins. After 0, 4, 8, 12, 24 and 48 h of incubation, the suspensions were removed from the restoratives and the numbers of viable bacteria were determined. Bacterial suspensions incubated without restoratives served as the controls. Ten replicates were carried out for each experiment. The resin composite containing triclosan demonstrated variable degrees of antibacterial activity against the microorganisms, revealing a significant inhibitory effect on S. mutans within 12 h compared to the control. The viable counts of A. viscosus significantly decreased after 24 h. A significant reduction of L. casei was observed after 48 h. The unloaded resin composite did not reveal a marked antibacterial effect. The resin composite loaded with triclosan might be beneficial in preventing cavity contamination and minimizing the risk of pulpal irritation in the short-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353–80.

    CAS  PubMed  Google Scholar 

  2. Aamdal-Scheie A, Luan WM, Dahlén G, Fejerskov O. Plaque pH and microflora of dental plaque on sound and carious root surfaces. J Dent Res. 1996;75:1901–8.

    Article  CAS  PubMed  Google Scholar 

  3. Beighton D, Lynch E. Comparison of selected microflora of plaque and underlying carious dentine associated with primary root caries lesions. Caries Res. 1995;29:154–8.

    Article  CAS  PubMed  Google Scholar 

  4. Martin FE, Nadkarni MA, Jacques NA, Hunter N. Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol. 2002;40:1698–704.

    Article  CAS  PubMed  Google Scholar 

  5. Bergenholtz G. Evidence for bacterial causation of adverse pulpal responses in resin-based dental restorations. Crit Rev Oral Biol Med. 2000;11:467–80.

    Article  CAS  PubMed  Google Scholar 

  6. Auschill TM, Arweiler NB, Brecx M, Reich E, Sculean A, Netuschil L. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci. 2002;110:48–53.

    Article  CAS  PubMed  Google Scholar 

  7. da Silva RC, Zuanon AC, Spolidorio DM, Campos JA. Antibacterial activity of four glass ionomer cements used in atraumatic restorative treatment. J Mater Sci Mater Med. 2007;18:1859–62.

    Article  CAS  PubMed  Google Scholar 

  8. Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resin. J Dent. 2007;35:201–6.

    Article  CAS  PubMed  Google Scholar 

  9. Svanberg M, Mjör IA, Orstavik D. Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. J Dent Res. 1990;69:861–4.

    CAS  PubMed  Google Scholar 

  10. Karanika-Kouma A, Dionysopoulos P, Koliniotou-Koubia E, Kolokotronis A. Antibacterial properties of dentin bonding systems, polyacid-modified composite resins and composite resins. J Oral Rehabil. 2001;28:157–60.

    Article  CAS  PubMed  Google Scholar 

  11. Matalon S, Slutzky H, Weiss EI. Surface antibacterial properties of packable resin composites: part I. Quintessence Int. 2004;35:189–93.

    PubMed  Google Scholar 

  12. Danese PN, Pratt LA, Kolter R. Biofilm formation as a developmental process. Methods Enzymol. 2001;336:19–26.

    Article  CAS  PubMed  Google Scholar 

  13. Fabiano JA, Sobieraj BD, Mather ML, Ciancio SG. Clinical effectiveness and soft tissue compatibility of a temporary restorative material. J Int Acad Periodontol. 2006;8:6–9.

    CAS  PubMed  Google Scholar 

  14. Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials. 2005;26:7145–53.

    Article  CAS  PubMed  Google Scholar 

  15. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006;27:3995–4002.

    Article  CAS  PubMed  Google Scholar 

  16. Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, Hahnel S. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol. 2009;54:595–601.

    Article  PubMed  Google Scholar 

  17. Slutzky H, Slutzky-Goldberg I, Weiss EI, Matalon S. Antibacterial properties of temporary filling materials. J Endod. 2006;32:214–7.

    Article  PubMed  Google Scholar 

  18. Bhargava HN, Leonard PA. Triclosan: applications and safety. Am J Infect Control. 1996;24:209–18.

    Article  CAS  PubMed  Google Scholar 

  19. Davies RM. The clinical efficacy of triclosan/copolymer and other common therapeutic approaches to periodontal health. Clin Microbiol Infect. 2007;13:25–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gunsolley JC. A meta-analysis of six-month studies of antiplaque and antigingivitis agents. J Am Dent Assoc. 2006;137:1649–57.

    CAS  PubMed  Google Scholar 

  21. Sharma NC, Galustians HJ, Qaqish J, Galustians A, Rustogi K, Petrone ME, Chaknis P, García L, Volpe AR, Proskin HM. Clinical effectiveness of a dentifrice containing triclosan and a copolymer for controlling breath odor. Am J Dent. 2007;20:79–82.

    PubMed  Google Scholar 

  22. Nudera WJ, Fayad MI, Johnson BR, Zhu M, Wenckus CS, BeGole EA, Wu CD. Antimicrobial effect of triclosan and triclosan with Gantrez on five common endodontic pathogens. J Endod. 2007;33:1239–42.

    Article  PubMed  Google Scholar 

  23. Imazato S, Torii M, Tsuchitani Y. Antibacterial effect of composite incorporating triclosan against Streptococcus mutans. J Osaka Univ Dent Sch. 1995;35:5–11.

    CAS  PubMed  Google Scholar 

  24. Kalyon BD, Olgun U. Antibacterial efficacy of triclosan-incorporated polymers. Am J Infect Control. 2001;29:124–5.

    Article  CAS  PubMed  Google Scholar 

  25. Boeckh C, Schumacher E, Podbielski A, Haller B. Antibacterial activity of restorative dental biomaterials in vitro. Caries Res. 2002;36:101–7.

    Article  CAS  PubMed  Google Scholar 

  26. Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RRB. Incorporation of bacterial inhibitor into resin composite. J Dent Res. 1994;73:1437–43.

    CAS  PubMed  Google Scholar 

  27. Vermeersch G, Leloup G, Delmée, Vreven J. Antibacterial activity of glass-ionomer cements, compomers and resin composites: relationship between acidity and material setting phase. J Oral Rehabil. 2005;32:368–74.

    Article  CAS  PubMed  Google Scholar 

  28. Spahr A, Lyngstadaas SP, Boeckh C, Andersson C, Podbielski A, Haller B. Effect of the enamel matrix derivative Emdogain on the growth of periodontal pathogens in vitro. J Clin Periodontol. 2002;29:62–72.

    Article  CAS  PubMed  Google Scholar 

  29. Tobias RS, Browne RM, Wilson CA. Antibacterial activity of dental restorative materials. Int Endod J. 1985;18:161–71.

    Article  CAS  PubMed  Google Scholar 

  30. Fairbourn DR, Charbeneau GT, Loesche WJ. Effect of improved Dycal and IRM on bacteria in deep carious lesions. J Am Dent Assoc. 1980;100:547–52.

    CAS  PubMed  Google Scholar 

  31. Villalaín J, Mateo CR, Aranda FJ, Shapiro S, Micol V. Membranotropic effects of the antibacterial agent triclosan. Arch Biochem Biophys. 2001;390:128–36.

    Article  PubMed  Google Scholar 

  32. Heath RJ, Rock CO. A triclosan-resistant bacterial enzyme. Nature. 2000;406:145–6.

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Schweizer HP. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett. 2001;202:1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Campbell JW, Cronan JE. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol. 2001;55:305–32.

    Article  CAS  PubMed  Google Scholar 

  35. Saunders KA, Greenman J, McKenzie C. Ecological effects of triclosan and triclosan monophosphate on defined mixed cultures of oral species grown in continuous culture. J Antimicrob Chemother. 2000;45:447–52.

    Article  CAS  PubMed  Google Scholar 

  36. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001;45:428–32.

    Article  CAS  PubMed  Google Scholar 

  37. McBain AJ, Ledder RG, Screenivasan P, Gilbert P. Selection for high-level resistance by chronic triclosan exposure is not universal. J Antimicrob Chemother. 2004;53:772–7.

    Article  CAS  PubMed  Google Scholar 

  38. Braid JJ, Wale MC. The antibacterial activity of triclosan-impregnated storage boxes against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus and Shewanella putrefaciens in conditions simulating domestic use. J Antimicrob Chemother. 2002;49:87–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Susanne Fuchs for the linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rathke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathke, A., Staude, R., Muche, R. et al. Antibacterial activity of a triclosan-containing resin composite matrix against three common oral bacteria. J Mater Sci: Mater Med 21, 2971–2977 (2010). https://doi.org/10.1007/s10856-010-4126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4126-1

Keywords

Navigation