Skip to main content

Advertisement

Log in

Assessment of Allowable Thermal Load for a River Reservoir Subject to Multi-Source Thermal Discharge from Operating and Designed Beloyarsk NPP Units (South Ural, Russian Federation)

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This study develops a quantitative approach to the establishment of a maximum allowable thermal discharge into a freshwater body (the Beloyarsk Reservoir) incorporated in the once-through cooling technology at the Beloyarsk nuclear power plant (NPP) (South Urals, Russian Federation). The study is based on a 3-D hydrodynamic model, embracing water circulation, heat transfer, and ice-cover formation in the Beloyarsk Reservoir. The model is driven by atmospheric forcing, river runoff, and the discharge/intake of NPP cooling water. It was used to simulate the horizontal and vertical distribution of water temperature under the effect of the operation of existing (number 3) and anticipated (numbers 4 and 5) nuclear power units. The model is validated by the comparison of the computation results with observed water temperature distribution and ice-cover configuration obtained with remote sensing techniques. The model was also used to predict the future evolution of water temperature after the launching of two new power units, which, having a common cooling system, may affect each other. It was shown that the first of the new units, no. 4, will not dramatically affect the existing thermal conditions in the reservoir, while launching one more unit, no. 5, will apparently result in overheating of the reservoir water in response to the greater volume of cooling-water discharge from the two power units. Because of a specific configuration of the recirculation flow, the reservoir may fail to cope with the dissipation of the generated heat, leading to a steady (uncontrolled) rise of water temperature in the inlet channel to one of the power units. This will reduce the potential of NPP, using the once-through cooling technology, and will most likely have an adverse effect on the survival of aquatic organisms in the Beloyarsk Reservoir. Therefore, some other environment-saving technologies must be developed for removing surplus heat from the unit no. 5 of the Beloyarsk NPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anderson, J. E. (1992). Determination of water surface temperature based on the use of thermal infrared multispectral scanner data. Geocarto International, 7(3), 3–8. doi:10.1080/10106049209354374.

    Article  Google Scholar 

  2. Benedini, M., & Tsakiris, G. (2013). Water quality modelling for rivers and streams. Water Science and Technology Library. doi:10.1007/978-94-007-5509-3.

  3. Beznosov, V. N., Kuchkina, M. A., & Suzdaleva, A. L. (2002). Studying thermal eutrophication in cooling reservoirs of nuclear power plants. Water Resources, 29(5), 561–566.

    Article  CAS  Google Scholar 

  4. Blumberg, A. F., & Mellor, G. L. (1987). A description of a three-dimensional coastal ocean circulation model. Coastal and Estuarine Sciences, 1–16. doi:10.1029/co004p0001.

  5. Chen, C., Shi, P., & Mao, Q. (2003). Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant. Journal of Environmental Science and Health, Part A, 38(8), 1659–1668. doi:10.1081/ese-120021487.

    Article  Google Scholar 

  6. Cloern, J. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253. doi:10.3354/meps210223.

    Article  CAS  Google Scholar 

  7. Diakov, A. A., Perekhozheva, T. N., & Zlokazova, E. I. (2001). Methods of high-sensitive analysis of actinides in liquid radioactive waste. Radiation Measurements, 34(1–6), 463–466. doi:10.1016/s1350-4487(01)00207-4.

    Article  CAS  Google Scholar 

  8. EPA. (1974). Effect of geographical variation on performance of recirculating cooling ponds. EPA-660/2–74-085 by Edward E.L. Washington D.C.

  9. Gomoiu, M., Secrieru, D., & Zaharia, D. (2005). Environmental effects of the thermal effluent discharged from NPP Cernavoda Unit 1 into the Danube River—partial results. GEO-ECO-MARINA, 11, 101–106.

    Google Scholar 

  10. Haapala, J. (2005). A numerical study of open water formation in sea ice. Journal of Geophysical Research, 110(C9). doi:10.1029/2003jc002200.

  11. IAEA. (2010). Nuclear Energy Series Technical Reports № NP-T-2.6. 2010. Efficient Water Management in Water Cooled Reactors. Vienna.

  12. Kerr, Y., et al. (2004). Land surface temperature retrieval techniques and applications. Thermal Remote Sensing in Land Surface Processing. doi:10.1201/9780203502174-c3.

  13. Khvostova, M. S. (2012). Some aspects of the decommissioning of nuclear power plants. Power Technol Eng, 45(6), 447–453. doi:10.1007/s10749-012-0292-2.

    Google Scholar 

  14. Kim, B. K., & Jeong, Y. H. (2013). High cooling water temperature effects on design and operational safety of NPPs in the gulf region. Nuclear Engineering and Technology, 45(7), 961–968. doi:10.5516/net.03.2012.079.

    Article  Google Scholar 

  15. Kirillin, G., Shatwell, T., & Kasprzak, P. (2013). Consequences of thermal pollution from a nuclear plant on lake temperature and mixing regime. Journal of Hydrology, 496, 47–56. doi:10.1016/j.jhydrol.2013.05.023.

    Article  Google Scholar 

  16. Kuenzer, C., & Dech, S. (Eds.). (2013). Thermal infrared remote sensing. Remote Sensing and Digital Image Processing. doi:10.1007/978-94-007-6639-6.

  17. Martyanov, S., & Ryabchenko, V. (2016). Bottom sediment resuspension in the easternmost Gulf of Finland in the Baltic Sea: a case study based on three-dimensional modeling. Continental Shelf Research, 117, 126–137. doi:10.1016/j.csr.2016.02.011.

    Article  Google Scholar 

  18. Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851. doi:10.1029/rg020i004p00851.

    Article  Google Scholar 

  19. Miller, S. (1977). The impact of thermal effluents on fish. Environmental Biology of Fishes, 1(2), 219–222. doi:10.1007/bf00000415.

    Article  Google Scholar 

  20. Nedveckaite, T., Marciulioniene, D., Mazeika, J., & Paskauskas, R. (2011). Radiological and environmental effects in Ignalina nuclear power plant cooling pond—Lake Druksiai: from plant put in operation to shut down period of time. Nuclear Power - Operation, Safety and Environment. doi:10.5772/18119.

  21. Nekouee, N., Hamidi, S. A., Roberts, P. J. W., & Schwab, D. J. (2015). Assessment of a 3D hydrostatic model (POM) in the near field of a buoyant river plume in Lake Michigan. Water Air Soil Pollut, 226(7). doi:10.1007/s11270-015-2488-1.

  22. Quattrochi, D., & Luvall, J. (2004). Thermal remote sensing in land surface processing. doi:10.1201/9780203502174.

  23. Rumynin, V. G. (2015). Overland flow dynamics and solute transport. Theory and Applications of Transport in Porous Media. doi:10.1007/978-3-319-21801-4.

  24. Ryabchenko, V., Dvornikov, A., Haapala, J., & Myrberg, K. (2010). Modelling ice conditions in the easternmost Gulf of Finland in the Baltic Sea. Continental Shelf Research, 30(13), 1458–1471. doi:10.1016/j.csr.2010.05.006.

    Article  Google Scholar 

  25. Saraev, O. M., Oshkanov, N. N., Zrodnikov, A. V., Poplavskii, V. M., Ashurko, Y. M., Bakanov, M. V., & Krasheninnikov, Y. M. (2010). Operating experience and prospects for future development of sodium-cooled fast reactors. Atomic Energy, 108(4), 240–247. doi:10.1007/s10512-010-9284-1.

    Article  CAS  Google Scholar 

  26. Šarauskiene, D. (2002). Thermal regime database of Ignalina nuclear power plant cooler—Lake Drukšiai. Environmental Monitoring and Assessment, 79, 1–12.

    Article  Google Scholar 

  27. Sazykina, T. G. (1993). Phytoplankton specimen bank for assessing the ecological state of NPP cooling ponds. Science of the Total Environment, 139–140(1), 287–295.

    Article  Google Scholar 

  28. Smagorinsky, J., Manade, S., & Holloway, J. I. (1965). Numerical results from a nine level general circulation model of the atmosphere. Monthly Weather Review, 93, 727–768.

    Article  Google Scholar 

  29. Suga, Y., Ogawa, H., Ohno, K., & Yamada, K. (2003). Detection of surface temperature from LANDSAT-7/ETM+. Advances in Space Research, 32(11), 2235–2240. doi:10.1016/s0273-1177(03)90548-5.

    Article  Google Scholar 

  30. Teixeira, T. P., Neves, L. M., & Araújo, F. G. (2009). Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research, 68(4), 188–195. doi:10.1016/j.marenvres.2009.06.004.

    Article  CAS  Google Scholar 

  31. The Princeton Ocean Model, The Program in Atmospheric and Oceanic Sciences (AOS). Princeton University, retrieved (2010–11-13.

  32. Thomas, A., Byrne, D., & Weatherbee, R. (2002). Coastal sea surface temperature variability from Landsat infrared data. Remote Sensing of Environment, 81(2–3), 262–272. doi:10.1016/s0034-4257(02)00004-4.

    Article  Google Scholar 

  33. Yarushina, M. I., Guseva, V. P., & Chebotina, M. Y. (2003). Species composition and ecological characteristic of algae from the cooling reservoir of the Beloyarsk nuclear power plant. Russian Journal of Ecology, 34, 20. doi:10.1023/A:1021858820333.

    Article  Google Scholar 

  34. Zimina L.M., Zimin V.L., Khayrutdinova J.A. Some results of the long-time ecological monitoring of the Leningrad NPP cooling water body (Koporskaya Bay, the Gulf of Finland). Hydrological, Chemical and Biological Processes of Transformation and Transport of Contaminants in Aquatic Environments (Proceedings of the Rostov-on-Don Symposium, May 1993). IAHS Publ. no. 219, 1994. 137–146.

  35. Zoran, M. A., Nicolae, D. N., Talianu, C. L., Ciobanu, M., & Ciuciu, J. G. (2005). Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V. doi:10.1117/12.627709.

Download references

Acknowledgments

The authors acknowledge Saint-Petersburg State University for research grant 3.39.138.2014. The authors also wish to acknowledge the anonymous reviewer for critical reading of the manuscript and suggesting a number of important comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Rumynin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikulenkov, A.M., Dvornikov, A.Y., Rumynin, V.G. et al. Assessment of Allowable Thermal Load for a River Reservoir Subject to Multi-Source Thermal Discharge from Operating and Designed Beloyarsk NPP Units (South Ural, Russian Federation). Environ Model Assess 22, 609–623 (2017). https://doi.org/10.1007/s10666-017-9562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9562-6

Keywords

Navigation