Skip to main content
Log in

A method to compute the effect of vertical mulching on the reduction of surface runoff

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Six plots (three as controls) were established in southern Brazil to assess the reduction in runoff by vertical mulching (vm). In the other three, ditches (0.08-m wide, 0.4-m deep) were cut perpendicular to the slope, 2-m and 12-m upslope from the bottom of the plot where a flume was installed to measure runoff. Three simulated rainfalls (80 mm h−1 for 120 min, 80 mm h−1 for 65 min, 97 mm h−1 for 65 min) were applied with a sprinkler system to generate runoff. Compared to the controls, vm delayed its beginning by 10 to 20 min and reduced its volume by 34 to 39%, because initially all and later some runoff was caught in the ditches from where it infiltrated into the surrounding soil. Based on the experimental results, we derived a method to compute the runoff reduction by vm as influenced by ditch spacing (ds), initial soil moisture content (θi), and rainfall rate and duration. Computations for a combination of four ds (5 to 20 m), five θi (16 to 32%-vol), and three rainfall regimes (124 mm h−1 for 20 min, 66 mm h−1 for 60 min, and 42 mm h−1 for 120 min) showed an increasing runoff reduction as ds or θi decreased. In some cases, runoff was even completely prevented. The reductions were larger in the 60-min than in the 20-min rainfall. For the 120-min rainfall, there was no runoff with any combination of ds and θi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Barcelos, A. A., Cassol, E. A., & Denardin, J. E. (1999). Vermelho-escuro sob condições de chuva intensa em diferentes sistemas de manejo. Revista Brasileira De Ciência Do Solo, 23(1), 35–43

    Article  Google Scholar 

  • Bouwer, H. (1966). Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resources Research, 2(4), 729–738

    Article  Google Scholar 

  • Brakensiek, D. L., Osborn, H. B., & Rawls, W. J. (1979). Field manual for research in agricultural hydrology. United States Department of Agriculture, Agricultural Handbook No. 224, Washington, D.C

  • Chu, X., & Mariño, M. A. (2005). Determination of ponding condition and infiltration into layered soils under unsteady rainfall. Journal of Hydrology, 313(3–4), 195–207

    Article  Google Scholar 

  • de Lima, J. L. M. P., Santos, L., Mujtaba, B., & de Lima, M. I. P. (2019). Laboratory assessment of the influence of rice straw mulch size on soil loss. Advances in Geosciences, 48, 11–18

    Article  Google Scholar 

  • Diamond, J. (1997). Collapse: How societies choose to fail or survive. Penguin

    Google Scholar 

  • Ehlers, W., & Goss, M. (2003). Water dynamics in plant production. CABI

    Book  Google Scholar 

  • Fairbourn, M. L., & Gardner, H. R. (1972). Vertical mulch effects on soil water storage. Soil Science Society of America Proceedings, 36(5), 823–827

    Article  Google Scholar 

  • Fairbourn, M. L., & Gardner, H. R. (1974). Field use of microwatersheds with vertical mulch. Agronomy Journal, 66(6), 740–744

    Article  Google Scholar 

  • Garcia, S. M., & Righes, A. A. (2008). Vertical mulching e manejo da água em semeadura direta. Revista Brasileira De Ciência Do Solo, 32(2), 833–842

    Article  Google Scholar 

  • Green, W. H., & Ampt, G. A. (1911). Studies in soil physics. I. The flow of air and water through soils. Journal of Agricultural Science, 4(1), 1–24

  • Hauser, V. L., & Taylor, H. M. (1964). Evaluation of deep-tillage treatments on a slowly permeable soil. Transactions of the ASAE, 7(2), 134–136

    Article  Google Scholar 

  • He, S., Qin, F., Zheng, Z., & Li, T. (2018). Changes of soil microrelief and its effect on soil erosion under different rainfall patterns in a laboratory experiment. CATENA, 162, 203–215.

    Article  Google Scholar 

  • Hillel, D. (1998). Environmental soil physics. Academic Press, San Diego

  • Ilha, R. (2018). Escoamento superficial e infiltração de água no solo em sistema plantio direto com “vertical mulching”. Dissertação (Doutor em Engenharia Civil), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

  • Kale, R. V., & Sahoo, B. (2011). Green-Ampt infiltration models for varied field conditions: A revisit. Water Resources Management, 25(14), 3505–3536

    Article  Google Scholar 

  • Klute, A. (1986). Methods of soil analysis, Part 1: Physical and mineralogical methods. Agronomy Monograph No. 9, 2nd ed. American Society of Agronomy/Soil Society of America, Madison

  • Kotulla, A. (2013). Wassergehaltsänderungen in einem Lysimetergefäß: Vergleich von Messungen mit einer Waage und lückenlosem Abtasten mit einer Bodenfeuchtesonde. Teil 1: Test der Bodenfeuchtesonde TRIME-PICO IPH T3/44 der Firma IMKO. Master of Science-Arbeit, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany

  • Kurothe, R. S., Kumar, G., Singh, R., Singh, H. B., Tiwari, S. P., Vishwakarma, A. K., Sena, D. R., & Pande, V. C. (2014). Effect of tillage and cropping systems on runoff, soil loss and crop yield under semiarid rainfed agriculture in India. Soil and Tillage Research, 140, 126–134

    Article  Google Scholar 

  • Lopes, I., Montenegro, A. A. A., & de Lima, J. L. M. P. (2019). Performance of conservation techniques for semiarid environments: Field observations with caatinga, mulch, and cactus forage palma. Water, 11, 792

    Article  CAS  Google Scholar 

  • Magunda, M. K., Larson, W. E., Linden, D. R., & Nater, E. A. (1997). Changes in microrelief and their effects on infiltration and erosion during simulated rainfall. Soil and Tillage Research, 10(1), 57–67

    Google Scholar 

  • Merten, G. H., Araújo, A. G., Biscaia, R. C. M., Barbosa, G. M. C., & Conte, O. (2015). No-till surface runoff and soil losses in southern Brazil. Soil and Tillage Research, 152, 85–93

    Article  Google Scholar 

  • Mein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water Resources Research, 9(2), 384–394

    Article  Google Scholar 

  • Montenegro, A. A. A., Abrantes, J. R. C. B., de Lima, J. L. M. P., Singh, V. P., & Santos, T. E. M. (2013). Impact of mulching on soil and water dynamics under intermittent simulated rainfall. CATENA, 109, 139–149

    Article  Google Scholar 

  • Montenegro, A. A. A., Lopes, I., Almeida, T. A. B., de Lima, J. L. M. P., Montenegro, H. G. L. A., & Araújo, B. G. (2020). Impacto de métodos naturais para conservação de água e solo no semiárido brasileiro. FAVE - Sección Ciencias Agrarias, 19(2), 49–59

    Article  Google Scholar 

  • Montgomery, D. R. (2007). Dirt: The erosion of civilizations. University of California Press

    Book  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900

    Article  Google Scholar 

  • Naghettini, M., & Pinto, E.J. de A. (2007). Hidrologia estatística. CPRM, Belo Horizonte

  • Parhizkar, M., Shabanpour, M., Lucas-Borja, M. E., Zema, D. A., Li, S., Tanaka, N., & Cerdà, A. (2020). Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall. International Journal of Sediment Research, 36(4), 468–478

    Article  Google Scholar 

  • Philip, J. R. (1969). The theory of infiltration. Advances in Hydroscience, 5, 215–296

    Article  Google Scholar 

  • Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137

    Article  Google Scholar 

  • Ramon, C.A. (2015). Controle da drenagem na fonte e sua compatibilização ao plano municipal de saneamento ambiental de Santa Maria. Dissertação (Mestrado em Engenharia Civil), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

  • Rao Mohan Rao, M. S., Ranga Rao, V., Ramachandram, M., & Agnihotri, R. C. (1977). Effect of vertical mulch on moisture conservation and yield of sorghum in vertisols. Agricultural Water Management, 1(4), 333–342

    Article  Google Scholar 

  • Rashidi, M., Ahmadbeyki, A., & Hajiaghaei, A. (2014). Prediction of soil infiltration rate based on some physical properties of soil. American-Eurasian Journal of Agricultural & Environmental Sciences, 14(12), 1359–1367

    Google Scholar 

  • Rawls, W. J., Brakensiek, D. L., & Saxton, K. E. (1982). Estimation of soil water properties. Transactions of the ASAE, 25(5), 1316–1320

    Article  Google Scholar 

  • Redinger, G. J., Campbell, G. S., Saxton, K. E., & Papendick, R. I. (1984). Infiltration rate of slot mulches: Measurement and numerical simulation. Soil Science Society of America Journal, 48(5), 982–986

    Article  Google Scholar 

  • Righes, A. A., Denardin, J. E., Kochhann, R. A., Nishijima, T., & Garcia, S. M. (2002). “Mulching” vertical e escoamento superficial no sistema plantio direto. XXXI. Congresso Brasileiro de Engenharia Agricola - A engenharia agrícola para o desenvolvimento sustentável: Água, energia e meio ambiente. SBEA/UFBA/EMBRAPA, Salvador, 225–236

  • Saxton, K. E., McCool, D. K., & Papendick, R. I. (1981). Slot mulch for runoff and erosion control. Journal of Soil and Water Conservation, 36(1), 44–47

    Google Scholar 

  • Simunek, J., Sejna, M., & van Genuchten, M. Th. (1999). The Hydrus-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0, IGWMC - TPS - 53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, USA

  • Spain, J. M., & McCune, D. L. (1956). Something new in subsoiling. Agronomy Journal, 48(4), 192–193

    Article  Google Scholar 

  • Strudley, M. W., Green, T. R., & Ascough, J. C. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research, (1), 4–48

    Article  Google Scholar 

  • Williams, J. D., Wuest, S. B., & Long, D. S. (2014). Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotation. Journal of Soil and Water Conservation, 69(6), 495–504

    Article  Google Scholar 

  • Zhang, G. H., & Xie, Z. F. (2019a). Soil surface roughness decay under different topographic conditions. Soil and Tillage Research, 187, 92–101

  • Zhang, Q. Y., Chen, W. W., & Zhang, Y. M. (2019b). Modification and evaluation of Green-Ampt model: Dynamic capillary pressure and broken-line wetting profile. Journal of Hydrology, 575, 1123–1132

  • Zhao, L., Hou, R., Wu, F., & Keesstra, S. (2018). Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil and Tillage Research, 179, 47–53

    Article  Google Scholar 

  • Zhu, P., Zhang, G., Zhang, B., & Wang, H. (2020). Variation in soil surface roughness under different land uses in a small watershed on the Loess Plateaus China. Catena, 188. https://doi.org/10.1016/j.catena.2020.104465

Download references

Acknowledgements

The authors are grateful to Fundação Estadual de Pesquisa Agropecuária—Santa Maria for the permission to conduct this study on their experimental field.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbson Ilha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilha, R., de Paiva, J.B.D., Righes, A.A. et al. A method to compute the effect of vertical mulching on the reduction of surface runoff. Environ Monit Assess 193, 702 (2021). https://doi.org/10.1007/s10661-021-09509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09509-w

Keywords

Navigation