Skip to main content
Log in

Fabrication of chitosan composite nanofibers for the recovery of precious palladium cations from aqueous solution

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, chitosan composite nanofibers with mean diameters of 300–500 nm have been prepared by electrospinning with poly(methacrylic acid) as the crosslinking agent and poly(ethylene oxide) as the cospinning polymer. Afterwards, these composite nanofibers were annealed at temperatures ranging from 110 to 190 °C to improve their solvent resistance. Their morphologies and structures were characterized by scanning electron microscopy, infrared spectroscopy (IR) and positron annihilation life spectroscopy. These composite nanofibers were used to adsorb the Pd2+ cations in aqueous solutions. The effects of chitosan content, annealing temperature, adsorption temperature, solution pH and initial Pd2+ concentration were carefully studied. The adsorption result shows that these composite nanofibers had better adsorption performance than the pristine chitosan and commercial activated carbon. Under the optimized adsorption conditions, the maximum adsorption capacity was found to be 366 mg/g. The adsorption kinetic, FT-IR and XPS confirmed the chemical adsorption behavior of Pd2+ cations on the composite nanofibers. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) acquired by Van’t Hoff equation indicated that the adsorption process was spontaneous and exothermic in nature. Moreover, selective adsorption study revealed that these composite nanofibers exhibited good adsorption selectivity for Pd2+ cations from the mixture of metal ions in aqueous solution. At last, the reusability of these novel composite nanofibers was tested for four runs. Overall, this study indicated that the as-prepared nanofiber mat was an efficient adsorbent for the recovery of precious palladium cations from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 12075154 and 11905132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjun Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Luo, Y., Wang, D. et al. Fabrication of chitosan composite nanofibers for the recovery of precious palladium cations from aqueous solution. Cellulose 29, 5803–5816 (2022). https://doi.org/10.1007/s10570-022-04628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04628-0

Keywords

Navigation