Skip to main content

Advertisement

Log in

Identifying prognostic biomarker related to immune infiltration in acute myeloid leukemia

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The immune cells of tumor microenvironment (TME) constitute a vital element of the tumor tissue. There is increasing evidence for their clinical significance in predicting prognosis and therapeutic outcomes. However, the TME immune cell infiltrating pattern of the bone marrow in acute myeloid leukemia (AML) patients remains unclear. Here, RNA-sequencing results of AML patients from TCGA database were used to quantify the abundance of 28 types of immune cells in the TME using the single-sample gene set enrichment analysis algorithm. We comprehensively evaluated the immune infiltration status in the TCGA-LAML cohort and defined two immunophenotypes: the immune hot and immune cold subtypes. Additionally, we constructed a TME score reflecting the immune infiltrating pattern of the patients using Cox regression algorithm. Subtypes with high TME score were characterized by over-activation of immune inflammation-related pathways, release of inflammatory factors, T-cell dysfunction, and poor prognosis. Subtypes with a low TME score were characterized by relatively low immune infiltration and immune exclusion. Our analysis indicated that patients in the low TME score group were more sensitive to chemotherapeutic drugs, and those in high TME score were more likely to respond to immunotherapy. Our study provides a new direction to evaluate anti-tumor therapy from immune infiltration of the TME, and the individualized scoring system in this study has important clinical significance in identifying patients who respond to immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset TCGA-LAML analyzed during the current study is available in the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/projects/TCGA-LAML). And the dataset GSE106291 analyzed during the current study is available in the Expression Omnibus (GEO) database under accession ID GSE106291 (http://www.ncbi.nlm.nih.gov/geo/). Associated codes are available at https://github.com/lwx0727/code-available.git.

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    PubMed  Google Scholar 

  2. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7):e441.

    PubMed  PubMed Central  Google Scholar 

  3. Medeiros BC, Chan SM, Daver NG, Jonas BA, Pollyea DA. Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia. Am J Hematol. 2019;94(7):803–11.

    PubMed  PubMed Central  Google Scholar 

  4. Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to Azacitidine and Nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label. Phase II Study Cancer Discov. 2019;9(3):370–83.

    CAS  PubMed  Google Scholar 

  5. Goswami M, Gui G, Dillon LW, et al. (2022) Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother Cancer. 10(1).

  6. Zeidan AM, Cavenagh J, Voso MT, et al. Efficacy and safety of azacitidine (AZA) in combination with the anti-PD-L1 Durvalumab (durva) for the front-line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and Pts with higher-risk myelodysplastic syndromes (HR-MDS): results from a large, international, randomized phase 2 study. Blood. 2019;134:829–829.

    Google Scholar 

  7. Casey SC, Amedei A, Aquilano K, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35:S199–223.

    PubMed  PubMed Central  Google Scholar 

  8. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol Off J Eur Soc Med Oncol. 2016;27(8):1482–92.

    CAS  Google Scholar 

  10. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34.

    CAS  PubMed  Google Scholar 

  11. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    CAS  PubMed  Google Scholar 

  12. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15(11):669–82.

    CAS  PubMed  Google Scholar 

  14. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med. 2016;13(12):e1002194.

    PubMed  PubMed Central  Google Scholar 

  16. Brück O, Dufva O, Hohtari H, et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. Blood Adv. 2020;4(2):274–86.

    PubMed  PubMed Central  Google Scholar 

  17. Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Investig. 2020;130(4):1552–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

    PubMed  PubMed Central  Google Scholar 

  19. Herold T, Jurinovic V, Batcha AMN, et al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018;103(3):456–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Google Scholar 

  21. Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.

    CAS  PubMed  Google Scholar 

  22. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics (Oxford, England). 2010;26(12):1572–3.

    CAS  PubMed  Google Scholar 

  23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    PubMed  PubMed Central  Google Scholar 

  24. Speiser JL, Miller ME, Tooze J, Ip E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl. 2019;134:93–101.

    PubMed  PubMed Central  Google Scholar 

  25. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics (Oxford, England). 2003;19(2):185–93.

    CAS  PubMed  Google Scholar 

  26. Tibshirani R. The lasso method for variable selection in the cox model. Stat Med. 1997;16(4):385–95.

    CAS  PubMed  Google Scholar 

  27. Laska E, Meisner M, Wanderling J. A maximally selected test of symmetry about zero. Stat Med. 2012;31(26):3178–91.

    PubMed  Google Scholar 

  28. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9(9):e107468.

    PubMed  PubMed Central  Google Scholar 

  31. Jiang P, Gu S, Pan D, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Korn C, Méndez-Ferrer S. Myeloid malignancies and the microenvironment. Blood. 2017;129(7):811–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krause DS, Fulzele K, Catic A, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Szczepanski MJ, Szajnik M, Czystowska M, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(10):3325–32.

    CAS  Google Scholar 

  35. Lim HX, Kim TS, Poh CL. Understanding the differentiation, expansion, recruitment and suppressive activities of myeloid-derived suppressor cells in cancers. Int J Mol Sci. 2020;21(10):3599.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12(1):76.

    PubMed  PubMed Central  Google Scholar 

  37. Beyar-Katz O, Gill S. Novel Approaches to Acute Myeloid Leukemia Immunotherapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2018;24(22):5502–15.

    CAS  Google Scholar 

  38. Isidori A, Salvestrini V, Ciciarello M, et al. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev Hematol. 2014;7(6):807–18.

    CAS  PubMed  Google Scholar 

  39. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.

    CAS  PubMed  Google Scholar 

  40. Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. Hematology (Amsterdam, Netherlands). 2018;23(10):729–39.

    CAS  PubMed  Google Scholar 

  41. Tabe Y, Konopleva M. Role of microenvironment in resistance to therapy in AML. Curr Hematol Malig Rep. 2015;10(2):96–103.

    PubMed  PubMed Central  Google Scholar 

  42. Dufva O, Pölönen P, Brück O, et al. Immunogenomic landscape of hematological malignancies. Cancer Cell. 2020;38(3):380-399.e313.

    CAS  PubMed  Google Scholar 

  43. Mehtonen J, Pölönen P, Häyrynen S, et al. Data-driven characterization of molecular phenotypes across heterogeneous sample collections. Nucl Acids Res. 2019;47(13):e76.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely appreciated the data provided by GEO and TCGA database.

Funding

The present study was funded by the National Natural Science Foundation of China (Grant No.: 82070133).

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for the conception and design of the manuscript. WXL and GPY contributed to draft the manuscript. GPY, WXL, XFC, YLL, JXL, YXC, ZXZ, YJL, XYZ, and CXY contributed to develop the methodology, analyze the data, and interpret the results. DX was responsible for preparing the figures, acquiring the funding, and revising critically to the manuscript. All authors have read and approved the final version.

Corresponding author

Correspondence to Dan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Yu, G., Li, Y. et al. Identifying prognostic biomarker related to immune infiltration in acute myeloid leukemia. Clin Exp Med 23, 4553–4562 (2023). https://doi.org/10.1007/s10238-023-01164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01164-4

Keywords

Navigation