Skip to main content

Advertisement

Log in

High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate change scenarios predict simultaneously increase in temperature, altered precipitation patterns and elevated atmospheric CO2 concentration, which will affect key ecosystem processes and plant growth and species interactions. In a large-scale experiment, we investigated the effects of in situ exposure to elevated atmospheric CO2 concentration, increased temperature and prolonged drought periods on the plant biomass in a dry heathland (Brandbjerg, Denmark). Results after 3 years showed that drought reduced the growth of the two dominant species Deschampsia flexuosa and Calluna vulgaris. However, both species recovered quickly after rewetting and the drought had no significant effect on annual aboveground biomass production. We did not observe any effects of increased temperature. Elevated CO2 stimulated the biomass production for D. flexuosa in one out of three years but did not influence the standing biomass for either D. flexuosa or the ecosystem as more litter was produced. Treatment combinations showed little interactions on the measured parameters and in particular elevated CO2 did not counterbalance the drought effect on plant growth, as we had anticipated. The plant community did not show any significant responses to the imposed climate changes and we conclude that the two heathland species, on a short time scale, will be relatively resistant to the changes in climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abu-Asab MS, Peterson PM, Shetler SG, Orli SS. 2001. Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612.

    Article  Google Scholar 

  • Aerts R. 1993. Biomass and nutrient dynamics of dominant plant species from heathlands. In: Aerts R, Heil GW, Eds. Heathlands: patterns and processes in a changing environment, Vol. 20. Geobotany: Kluwer Academic Publishers.

    Google Scholar 

  • Aerts R. 1995. The advantages of being evergreen. Trends Ecol Evol 10:402–7.

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–71.

    Article  PubMed  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C. 2011a. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–66.

    Article  PubMed  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L. 2011b. Interactive effects of drought, elevated CO(2) and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1550–61.

    Article  PubMed  CAS  Google Scholar 

  • Andresen LC, Jonasson S, Strom L, Michelsen A. 2008. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem. Plant Soil 313:283–95.

    Article  CAS  Google Scholar 

  • Beier C. 2004. Climate change and ecosystem function—full-scale manipulations of CO2 and temperature. New Phytol 162:243–5.

    Article  Google Scholar 

  • Beier C, Emmett B, Gundersen P, Tietema A, Penuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D. 2004. Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7:583–97.

    Article  Google Scholar 

  • Beier C, Emmett BA, Tietema A, Schmidt IK, Penuelas J, Lang EK, Duce P, de Angelis P, Gorissen A, Estiarte M, de Dato GD, Sowerby A, Kroel-Dulay G, Lellei-Kovacs E, Kull O, Mand P, Petersen H, Gjelstrup P, Spano D (2009) Carbon and nitrogen balances for six shrublands across Europe. Global Biogeochem Cycles 23.

  • Berdowski JJM. 1994. The effect of exernal stress and disturbance factors on Calluna-dominated heathland vegetation. In: Aerts R, Heil GW, Eds. Heathlands: patterns and processes in a changing environment. Dordrecht: Kluwer Academic Publisher. p 85–124.

    Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–38.

    Article  CAS  Google Scholar 

  • Britton A, Marrs R, Pakeman R, Carey P. 2003. The influence of soil-type, drought and nitrogen addition on interactions between Calluna vulgaris and Deschampsia flexuosa: implications for heathland regeneration. Plant Ecol 166:93–105.

    Article  Google Scholar 

  • Brooker RW. 2006. Plant–plant interactions and environmental change. New Phytol 171:271–84.

    Article  PubMed  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic Tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB. 2006. Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA 103:13740–4.

    Article  PubMed  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD. 2007. Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–65.

    Article  PubMed  Google Scholar 

  • Damgaard C, Riis-Nielsen T, Schmidt IK. 2009. Estimating plant competition coefficients and predicting community dynamics from non-destructive pin-point data: a case study with Calluna vulgaris and Deschampsia flexuosa. Plant Ecol 201:687–97.

    Article  Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Zavalloni C, Gielen B, Malchair S, Carnol M, Merckx R, Van den Berge J, Ceulemans R, Nijs I. 2008. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5:585–94.

    Article  Google Scholar 

  • Diaz S, Cabido M. 1997. Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–74.

    Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB. 2005. Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829–37.

    Article  CAS  Google Scholar 

  • Dunnett NP, Grime JP. 1999. Competition as an amplifier of short-term vegetation responses to climate: an experimental test. Funct Ecol 13:388–95.

    Article  Google Scholar 

  • Ellenberg H. 1991. Indicator values of plants in Central Europe 1. Indicator values of vascular plants not including Rubus. Scripta Geobot 18:9–166.

    Google Scholar 

  • Falk K, Friedrich U, von Oheimb G, Mischke K, Merkle K, Meyer H, Hardtle W. 2010. Molinia caerulea responses to N and P fertilisation in a dry heathland ecosystem (NW-Germany). Plant Ecol 209:47–56.

    Article  Google Scholar 

  • Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield TA. 1997. Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137:247–55.

    Article  Google Scholar 

  • Gilgen AK, Buchmann N. 2009. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6:2525–39.

    Article  Google Scholar 

  • Gimingham CH. 1972. Ecology of heathlands. London: Chapman and Hall.

    Google Scholar 

  • Gordon H, Haygarth PM, Bardgett RD. 2008. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem 40:302–11.

    Article  CAS  Google Scholar 

  • Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, Emmett BA, Beier C. 2004. Climate change affects carbon allocation to the soil in shrublands. Ecosystems 7:650–61.

    Article  CAS  Google Scholar 

  • Granier A, Reichstein M, Breda N, Janssens I, Falge E, Ciais P, Gruenwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Koestner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala I, Wang Q. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–45.

    Article  Google Scholar 

  • Grime J, Fridley JD, Askew AP, Thompson K, Hodgson JG, Bennett CR. 2008. Long-term resistance to simulated climate change in an infertile grassland. Proc Natl Acad Sci USA 105:10028–32.

    Article  PubMed  CAS  Google Scholar 

  • Higgins PAT, Jackson RB, Des Rosiers JM, Field CB. 2002. Root production and demography in a California annual grassland under elevated atmospheric carbon dioxide. Glob Change Biol 8:841–50.

    Article  Google Scholar 

  • Hovenden MJ, Miglietta F, Zaldei A, Vander Schoor JK, Wills KE, Newton PCD. 2006. The TasFACE climate-change impacts experiment: design and performance of combined elevated CO2 and temperature enhancement in a native Tasmanian grassland. Aust J Bot 54:1–10.

    Article  Google Scholar 

  • Hovenden MJ, Wills KE, Schoor JKV, Williams AL, Newton PCD. 2008. Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytol 178:815–22.

    Article  PubMed  CAS  Google Scholar 

  • Hudson JM, Henry GH. 2010. High Arctic plant community resists 15 years of experimental warming. J Ecol 98:1035–41.

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–74.

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schadler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wollecke J, Beierkuhnlein C. 2011. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702.

    Article  Google Scholar 

  • Jonasson S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:101–6.

    Article  Google Scholar 

  • Jonasson S, Skold SE. 1983. Influences of frost-heaving on vegetation and nutrient regime of polygon-patterned ground. Vegetatio 53:97–112.

    Article  Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV. 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the arctic. Ecology 80:1828–43.

    Article  Google Scholar 

  • Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB. 2008a. Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob Change Biol 14:615–23.

    Article  Google Scholar 

  • Knapp A, Beier C, Briske D, Classen AT, Luo Y, Reichstein M, Smith M, Smith SD, Bell JE, Heisler JL, Leavitt SW, Sherry RS, Smith B, Weltzin J, Weng E, Yarie J. 2008b. Consequences of altered precipitation regimes for terrestrial ecosystems. Bioscience 58:1–11.

    Article  Google Scholar 

  • Kongstad J. 2006. Kvælstof og fosfors indvirkning på fænologi, tilvækst og næringsstofindhold for Deschampsia flexuosa and Calluna vulgaris. Biologisk institut, Københavnsuniverstitet, Report. p 1–81.

  • Kreyling J, Beierkuhnlein C, Jentsch A. 2010. Effects of soil freeze–thaw cycles differ between experimental plant communities. Basic Appl Ecol 11:65–75.

    Article  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob Change Biol 17:1884–99.

    Article  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–76.

    Article  PubMed  CAS  Google Scholar 

  • Leuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Koerner C. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol Evol 26:236–41.

    Article  PubMed  Google Scholar 

  • Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad D, Rustad L. 2008. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:1986–99.

    Article  Google Scholar 

  • Maestre FT, Reynolds JF. 2007. Biomass responses to elevated CO2, soil heterogeneity and diversity: an experimental assessment with grassland assemblages. Oecologia 151:512–20.

    Article  PubMed  Google Scholar 

  • Maraldo K, Krogh PH, van der Linden L, Christensen B, Mikkelsen TN, Beier C, Holmstrup M. 2010. The counteracting effects of elevated atmospheric CO2 concentrations and drought episodes: studies of enchytraeid communities in a dry heathland. Soil Biol Biochem 42:1958–66.

    Article  CAS  Google Scholar 

  • Mayer AL, Rietkerk M. 2004. The dynamic regime concept for ecosystem management and restoration. Bioscience 54:1013–20.

    Article  Google Scholar 

  • McCarthy HR, Oren R, Johnsen KH, Gallet-Budynek A, Pritchard SG, Cook CW, Ladeau SL, Jackson RB, Finzi AC. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol 185:514–28.

    Article  PubMed  CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A. 2006. European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–76.

    Article  Google Scholar 

  • Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C. 1999. Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytol 143:523–38.

    Article  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breemen N, Wallen B. 2001. Spatial and temporal performance of the MiniFACE (Free Air CO2 Enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–27.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TN, Beier C, Jonasson S, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Andresen LC, Arndal MF, Bruun N, Christensen S, Danbaek S, Gundersen P, Jorgensen P, Linden LG, Kongstad J, Maraldo K, Prieme A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sorensen P, Larsen KS, Carter MS, Ibrom A, Martinussen T, Miglietta F, Sverdrup H. 2008. Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project. Funct Ecol 22:185–95.

    Google Scholar 

  • Norby RJ, Luo YQ. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–93.

    Article  Google Scholar 

  • Norby RJ, Hanson PJ, O’Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng WX, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW. 2002. Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–6.

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, de Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–6.

    Article  PubMed  CAS  Google Scholar 

  • Olesen JE, Bindi M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–62.

    Article  Google Scholar 

  • Penuelas J, Filella I. 2001. Phenology—responses to a warming world. Science 294:793–5.

    Article  PubMed  CAS  Google Scholar 

  • Penuelas J, Gordon C, Llorens L, Nielsen T, Tietema A, Beier C, Bruna P, Emmett B, Estiarte M, Gorissen A. 2004. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7:598–612.

    Article  Google Scholar 

  • Penuelas J, Prieto P, Beier C, Cesaraccio C, de Angelis P, de Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A, Lang EK, Kroel-Dulay G, Llorens L, Pellizzaro G, Riis-Nielsen T, Schmidt IK, Sirca C, Sowerby A, Spano D, Tietema A. 2007. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol 13:2563–81.

    Article  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I. 2009. Phenology feedbacks on climate change. Science 324:887–8.

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Penuelas J, Niinemets U, Ogaya R, Schmidt IK, Beier C, Tietema A, Sowerby A, Emmett BA, Lang EK, Kroel-Dulay G, Lhotsky B, Cesaraccio C, Pellizzaro G, de Dato G, Sirca C, Estiarte M. 2009. Changes in the onset of spring growth in shrubland species in response to experimental warming along a north-south gradient in Europe. Glob Ecol Biogeogr 18:473–84.

    Article  Google Scholar 

  • Riis-Nielsen T. 1997. Effects of nitrogen on the stability and dynamics of Danish heathland vegetation, Ph.D. Thesis, Dept. of Plant Ecocogy, University of Cobenhagen. p 1–183

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Gcte NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.

    Article  Google Scholar 

  • Sas Institute Inc. 2003. SAS/STAT User’s guide, version 9.1. Cary, NC: Statistical Analysis System Institute.

    Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A. 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–60.

    Article  Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A. 2002. Mineralization and allocation of nutrients by plants and microbes in four tundra ecosystems–responses to warming. Plant Soil 242(1):93–106.

    Article  CAS  Google Scholar 

  • Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M. 2004. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought. Ecosystems 7:638–49.

    Article  CAS  Google Scholar 

  • Selsted MB, Ambus P, Michelsen A, van der Linden L, Larsen KS, Pilegaard K, Mikkelsen TN, Beier C. 2011. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique. Atmos Environ 45:208–14.

    Article  CAS  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2002. Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–90.

    Article  PubMed  CAS  Google Scholar 

  • Simoes MP, Madeira M, Gazarini L. 2008. The role of phenology, growth and nutrient retention during leaf fall in the competitive potential of two species of mediterranean shrubs in the context of global climate changes. Flora 203:578–89.

    Article  Google Scholar 

  • Sowerby A, Emmett BA, Tietema A, Beier C. 2008. Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob Change Biol 14:2388–404.

    Article  Google Scholar 

  • Vanvuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA. 1997. Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytol 135:455–65.

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.

    Article  PubMed  CAS  Google Scholar 

  • Webb N. (1986) Heathlands. A natural history of Britain’s lowland heaths. Collins, London. p 1–223.

  • Wright RF. 1998. Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project). Ecosystems 1:216–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank The Climaite project (www.climaite.dk); builds on a major donation from the Villum Kann Rasmussen foundation and is further supported by, Air Liquide Denmark A/S and the participating institutions. The authors wish to thank Poul T. Sørensen, Preben Jørgensen and Svend Danbæk for keeping the CLIMAITE facilities running and constantly ready for field work, and Kirsten Birch Håkansson, Annebeth Hoffmann and Karen Thirslund for assistance at the field site during long hours pin-pointing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Kongstad.

Additional information

Author Contributions

CB, TNM, ISK, JK—Conceived of or designed study; JK, MFA, TRN, IKS—performed research; JK—analyzed data; TRN—contributed new models; JK, IKS—wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongstad, J., Schmidt, I.K., Riis-Nielsen, T. et al. High Resilience in Heathland Plants to Changes in Temperature, Drought, and CO2 in Combination: Results from the CLIMAITE Experiment. Ecosystems 15, 269–283 (2012). https://doi.org/10.1007/s10021-011-9508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9508-9

Keywords

Navigation