Skip to main content
Log in

Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Human thermal comfort assessments pertaining to exercise while in outdoor environments can improve urban and recreational planning. The current study applied a simple four-segment skin temperature approach to the COMFA (COMfort FormulA) outdoor energy balance model. Comparative results of measured mean skin temperature (\( \mathop{{\bar{T}}}\nolimits_{{Msk}} \)) with predicted \( \mathop{{\bar{T}}}\nolimits_{{sk}} \) indicate that the model accurately predicted \( \mathop{{\bar{T}}}\nolimits_{{sk}} \), showing significantly strong agreement (r = 0.859, P < 0.01) during outdoor exercise (cycling and running). The combined 5-min mean variation of the \( \mathop{{\bar{T}}}\nolimits_{{sk}} \) RMSE was 1.5°C, with separate cycling and running giving RMSE of 1.4°C and 1.6°C, respectively, and no significant difference in residuals. Subjects’ actual thermal sensation (ATS) votes displayed significant strong rank correlation with budget scores calculated using both measured and predicted \( \mathop{{\bar{T}}}\nolimits_{{sk}} \) (r s  = 0.507 and 0.517, respectively, P < 0.01). These results show improved predictive strength of ATS of subjects as compared to the original and updated COMFA models. This psychological improvement, plus \( \mathop{{\bar{T}}}\nolimits_{{sk}} \) and T c validations, enables better application to a variety of outdoor spaces. This model can be used in future research studying linkages between thermal discomfort, subsequent decreases in physical activity, and negative health trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACSM (2006) ACSM’s guidelines for exercise testing and prescription, 7th edn. Lippincott Williams and Wilkins, Philadelphia

  • Batte AL, Darling J, Evans J, Lance LM, Olson EI, Pincivero DM (2003) Physiologic responses to a prescribed rating of perceived exertion on an elliptical fitness cross-trainer. J Sports Med Phys Fitness 43(3):300–305

    CAS  Google Scholar 

  • Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  Google Scholar 

  • Brotherhood JR (2008) Heat stress and strain in exercise and sport. J Sci Med Sport 11(1):6–19

    Article  Google Scholar 

  • Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeorol 30(1):43–52

    Article  CAS  Google Scholar 

  • Brown RD, Gillespie TJ (1995) Microclimate landscape design. Wiley, New York

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11(1):20

    Article  Google Scholar 

  • Bulcao CF, Frank SM, Raja SN, Tran KM, Goldstein DS (2000) Relative contribution of core and skin temperatures to thermal comfort in humans. J Therm Biol 25(1–2):147–150

    Article  Google Scholar 

  • Clark R, Edholm O (1985) Man and his thermal environment. Arnold, London

    Google Scholar 

  • Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86

    Article  Google Scholar 

  • Epstein Y, Moran DS (2006) Evaluation of the environmental stress index (ESI) for hot/dry and hot/wet climates. Ind Health 44(3):399–403

    Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort. Analysis and application in environmental engineering. Danish Technical, Copenhagen

    Google Scholar 

  • Fiala D, Lomas KJ (1999) Applications of a computer model predicting human thermal comfort and responses to the design of sports stadia. In: Proceedings of CIBSE ’99. Institute of Energy and Sustainable Design, De Montfort University, Leicester, UK, p 492

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human themoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2007) Dynamic simulation of human heat transfer and thermal comfort. In: Mekjavic S, Kounalakis S, Taylor NAS (eds) Proceedings of the 12th International Conference on Environment Ergonomics, Piran Slovenia, 17–19 August 2007, pp 513–515

  • Gagge AP (1971) An effective temperature scale based on a single model of human physiological temperature response. ASHRAE Trans 77:247–262

    Google Scholar 

  • Gavhed CE, Holmer I (1996) Physiological and subjective responses to thermal transients of exercising subjects dressed in cold-protective clothing. Eur J Appl Phys Occup Phys 72(6):573–581

    Article  Google Scholar 

  • Golden JS, Hartz D, Brazel A, Luber G, Phelan P (2008) A biometeorology study of climate and heat-related morbidity in Phoenix from 2001 to 2006. Int J Biometeorol 52(6):471–480

    Article  Google Scholar 

  • Gosling S, McGregor G, Lowe J (2009) Climate change and heat-related mortality in six cities part 2: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int J Biometeorol 53(1):31–51

    Article  Google Scholar 

  • Haslam RA, Parsons KC (1988) Quantifying the effects of clothing for models of human response to the thermal environment. Ergonomics 31(12):1787–1806

    Article  CAS  Google Scholar 

  • Havenith G, Holmer I, Parsons KC (2002) Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build 34(6):581–591

    Article  Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Acadamic, London

    Google Scholar 

  • Hodder SG, Parsons KC (2007) The effects of solar radiation on thermal comfort. Int J Biometeorol 51(3):233–250

    Article  Google Scholar 

  • Hoppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Build 34(6):661–665

    Article  Google Scholar 

  • Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699

    Article  Google Scholar 

  • ISO9920 (2007) ISO 9920: Ergonomics of the thermal environment: Estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO, Geneva

    Google Scholar 

  • Johansson E, Rohinton E (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133

    Article  Google Scholar 

  • Karvonen M, Kentala K, Mustala O (1957) The effects of training on heart rate: a longitudinal study. Ann Exp Biol Fenn 35:307–267

    CAS  Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TJ (2008) Estimating the radiation absorbed by a human. Int J Biometeorol 52(6):491–503

    Article  Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TJ (2009a) Part A: Assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int J Biometeorol 53:415–428

    Article  Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TJ (2009b) Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int J Biometeorol 53:429–441

    Article  Google Scholar 

  • Kenshalo DR (1970) Psychophysical studies of temperature sensitivity. In: Neff WD (ed) Contributions to sensory physiology. Academic, New York

    Google Scholar 

  • Kerslake D (1972) The stress of hot environments. Cambridge University Press, London

    Google Scholar 

  • Lin T (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44(10):2017–2026

    Article  Google Scholar 

  • Mairiaux P, Malchaire J, Candas V (1987) Prediction of mean skin temperature in warm environments. Eur J Appl Phys 56(6):686–692

    Article  CAS  Google Scholar 

  • Malchaire J, Kampmann B, Havenith G, Mehnert P, Gebhardt HJ (2000) Criteria for estimating acceptable exposure times in hot working environments: a review. Int Arch Occup Environ Health 73:215–220

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (1999) Estimation and calculation of the mean radiant temperature within urban areas. In: de Dear RJ, Potter JC (eds) Proceedings of the 15th International Congress of Biometeorology and International Conference on Urban Climatology, volume ICB9.2, pp 1–6

  • Maw G, Boutcher S, Taylor N (1993) Ratings of perceived exertion and effect in hot and cool environments. Eur J Appl Phys 67:174–179

    Article  CAS  Google Scholar 

  • Mitchell D, Wyndham CH (1969) Comparison of weighting formulas for calculating mean skin temperature. J Appl Physiol 26(5):616–622

    CAS  Google Scholar 

  • Mora-Rodriguez R, Del Cosa J, Estevez E (2008) Thermoregulatory responses to constant versus variable-intensity exercise in the heat. Med Sci Sport Exer 40(11):1945

    Article  Google Scholar 

  • Morris C, Atkinson G, Drust B, Marrin K, Gregson W (2009) Human core temperature responses during exercise and subsequent recovery: an important interaction between diurnal variation and measurement site. Chronobiol Int 26(3):560–575

    Article  Google Scholar 

  • Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44(9):1777–1787

    Article  Google Scholar 

  • Nakamura M, Yoda T, Crawshaw LI, Yasuhara S, Saito Y, Kasuga M, Nagashima K, Kanosue K (2008) Regional differences in temperature sensation and thermal comfort in humans. J Appl Physiol 105:1897–1906

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70(3):227–235

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: analysis across different european countries. Build Environ 41(11):1455–1470

    Article  Google Scholar 

  • Ogawa T, Sugenoya J, Ohnishi N, Natsume K, Ochiai M, Nishida M, Shinoda N, Katoh K, Imamura R (1991) Dynamic sweating response of man to infrared radiation in various spectral regions. Int J Biometeorol 35(18):18–23

    Article  CAS  Google Scholar 

  • Parsons K (2003) Human thermal environments: The effects of hot, moderate and cold environments on human health, comfort and performance, 2nd edn. Taylor and Francis, New York

    Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19(3):531–533

    CAS  Google Scholar 

  • Richards M, Havenith G (2007) Progress towards the final UTCI model. In: Mekjavic S, Kounalakis S, Taylor NAS (eds) Proceedings of the 12th International Conference on Environment Ergonomics, Piran Slovenia, 19–24 August 2007, pp 521–524

  • Roberts WO (2007) Heat and cold: what does the environment do to marathon injury? Sports Med 37(4/5):400–403

    Article  Google Scholar 

  • Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46(4):371–384

    Article  Google Scholar 

  • Saltin B, Hermansen L (1966) Esophageal, rectal, and muscle temperature duirng exercise. J Appl Physiol 21:1757–1762

    CAS  Google Scholar 

  • Shibasaki M, Wilson TE, Crandall CG (2006) Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol 100(5):1692–1701

    Article  Google Scholar 

  • Spagnolo J, de Dear RJ (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738

    Article  Google Scholar 

  • Sparks S, Cable N, Doran D, Maclaren D (2005) The influence of environmental temperature on duathlon performance. Ergonomics 48:1558–1567

    Article  CAS  Google Scholar 

  • Stolwijk JAA (1971). A mathematical model of physiological temperature regulation in man. Technical report, NASA CR-1855, Washington, DC

  • Stolwijk JAJ, Hardy JD (1966) Temperature regulation in man—a theoretical study. Pflugers Arch Ges Physiol 291:129–162

    Article  CAS  Google Scholar 

  • Strath SJ, Swartz AM, Basset DR, O’Brien WL, King GA, Ainsworth BE (2000) Evaluation of heart rate as a method for assessing moderate intensity physical activity. Med Sci Sport Exer 32(9):S465–S470

    CAS  Google Scholar 

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646

    Article  Google Scholar 

  • Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Goteborg, Sweden. Int J Biometeorol 48:149–156

    Article  Google Scholar 

  • Tikuisis P, Meunier P, Jubenville C (2001) Human body surface area: measurement and prediction using three dimensional body scans. Eur J Appl Phys 85(3–4):264–271

    Article  CAS  Google Scholar 

  • Tucker R, Marle T, Lambert EV, Noakes TD (2006) The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol 574(3):905–915

    Article  CAS  Google Scholar 

  • van Marken Lichtenbelt WD, Frijns AJH, Fiala D, Janssen FEM, van Ooijen AMJ, van Steenhoven AA (2004) Effect of individual characteristics on a mathematical model of human thermoregulation. J Therm Biol 29(7–8):577–581

    Article  Google Scholar 

  • Vanos JK, Warland JS, Kenny NA, Gillespie TJ (2010) Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54(4):319–334

    Article  Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1936) A new method for particional calorimetry. Am J Physiol 116:641–655

    CAS  Google Scholar 

  • Yao Y, Lian Z, Liu W, Shen Q (2007) Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments. Indoor Built Environ 16(6):505

    Article  Google Scholar 

  • Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort—adaptive predicted mean vote (aPMV). Build Environ 44(10):2089–2096

    Article  Google Scholar 

  • Zhang Y, Zhao R (2008) Overall thermal sensation, acceptability and comfort. Build Environ 43:44–50

    Article  Google Scholar 

  • Zhang H, Huizenga C, Arens E, Wang D (2004) Thermal sensation and comfort in transient non-uniform thermal environments. Eur J Appl Physiol 92:728–733

    Article  CAS  Google Scholar 

  • Zolfaghari A, Maerefat M (2010) A new simplified model for evaluating non-uniform thermal sensation caused by wearing clothing. Build Environ 45:776–783

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer K. Vanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanos, J.K., Warland, J.S., Gillespie, T.J. et al. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. Int J Biometeorol 56, 21–32 (2012). https://doi.org/10.1007/s00484-010-0393-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0393-2

Keywords

Navigation