Skip to main content
Log in

Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The significant mortality of the Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri forests, locally known as “Mal del Ciprés”, has been reported since 1945 for most sites across its distribution in Argentina. However, the cause of this decline is still a topic of discussion. In this study, radial growth patterns from symptomatic and asymptomatic A. chilensis trees were analyzed to determine the influence of drought events on tree growth. Fifty pairs of symptomatic and asymptomatic trees with similar DBH, competition, and microsite conditions were cored at five pure A. chilensis stands near El Bolsón, Río Negro, Argentina. A reference chronology from nonaffected trees was used to cross-date all cores and to determine the relationship between A. chilensis radial growth and climate. The growth of A. chilensis is favored by above average precipitation in late spring–early summer (November and December). A strong relationship was also observed between radial growth patterns and the Palmer drought severity index, a measure of the regional water deficit. Significant differences in growth patterns were recorded between symptomatic and asymptomatic trees. Following extreme drought events, the growth of symptomatic trees is consistently lower than in asymptomatic trees. Based on the larger number of droughts recorded during the past decades and on future climatic predictions suggesting increasing trends in the frequency and intensity of drought events in northern Patagonia, a gradual increase in the number of trees affected by “Mal del Ciprés” along the twenty-first century is likely expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amoroso MM (2009) Stand development patterns as a consequence of the decline in Austrocedrus chilensis forests. PhD Dissertation, University of British Columbia

  • Anderson TW (1957) An introduction to multivariate statistical analysis. Wiley, New York

    Google Scholar 

  • Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Can J For Res 33:210–221

    Article  Google Scholar 

  • Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914

    Article  Google Scholar 

  • Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree Ring Bull 44:1–15

    Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research, vol.1: the analysis of case-control studies. International Agency For Research On Cancer, Lyon

    Google Scholar 

  • Buamscha G, Gobbi M, Mazzarino MJ, Laos F (1998) Indicators of nitrogen conservation in Austrocedrus chilensis forests along a moisture gradient in Argentina. For Ecol Manage 112:253–261

    Article  Google Scholar 

  • Calí SG (1996) Austrocedrus chilensis: estudio de los anillos de crecimiento y su relación con la dinámica del “Mal del Ciprés” en el Parque Nacional Nahuel Huapi, Argentina. Trabajo para optar al grado de Licenciado en Ciencias Biológicas. Universidad Nacional del Comahue. Bariloche

  • Chauchard LM, Barnaba J (1986) Plan de Ordenación Forestal Cuartel Loma del Medio-Río Azul. Provincia de Río Negro. IFONA-Servicio Forestal Andino. Informe interno inédito

  • Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth trends reconstructed from tree rings: a case study from the Italian Alps. For Ecol Manage 109:103–118

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp 847–940

    Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. Ph.D. dissertation, University of Arizona, Tucson

  • Cordon V, Forquera JC, Gastiazoro J, Barros V, Schmidt I (1993) Estudio microclimático del área cordillerana del Sudoeste de la Pcia. de Río Negro. Cartas de precipitación. Facultad de Ciencias Agrarias, Cinco Saltos, Río Negro

  • Crow GR, Hicks RR (1990) Predicting mortality in mixed oak stands following spring insect defoliation. For Sci 36:831–841

    Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydromet 5:1117–1130

    Article  Google Scholar 

  • Dezzotti A, Sancholuz L (1991) Los bosques de Austrocedrus chilensis en Argentina: ubicación, estructura y crecimiento. Bosque 12:43–47

    Google Scholar 

  • Dutilleul P, Till C (1988) Principal component analysis and discriminant analysis in dendrochronology. In: wood and archaeology. Hackens T, Munaut AV, Till C (eds). Acts of the European Symposium. Pact 22-I.3. Louvain-la-Neuve, Belgium, pp 37–52

  • El Mujtar VA, Andenmatten E (2007) “Mal del ciprés”: búsqueda de la causa más probable de daño mediante un análisis deductivo y comparativo. Bosque 28:3–9

    Google Scholar 

  • Filip GM, Rosso PH (1999) Cypress mortality (mal del ciprés) in the Patagonian Andes: comparison with similar forest diseases and declines in North America. Eur J Forest Pathol 29:89–96

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • García-González I, Díaz-Vizcaíno EA, Martínez-Cortizas A (1997) Evidence for a common and species-specific climatic response of oak and birch on a northern Galician site (NW Spain) by means of multivariate procedures. Dendrochronologia 15:119–127

    Google Scholar 

  • Goya JF, Ferrando JJ, Bocos D, Yapura P (1995) Estructura y desarrollo de un rodal coetáneo de Austrocedrus chilensis en El Bolsón, Río Negro, Argentina. Rev Fac Agron. La Plata 71:165–171

    Google Scholar 

  • Greslebin AG, Hansen EM, Winton LM, Rajchenberg M (2005) Phytophthora species from declining Austrocedrus chilensis forests in Patagonia, Argentina. Mycologia 97:218–228

    Article  PubMed  Google Scholar 

  • Havrylenko M, Rosso PH, Fontenla SB (1989) Austrocedrus chilensis: contribución al estudio de su mortalidad en Argentina. Bosque 10:29–36

    Google Scholar 

  • Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–75

    Google Scholar 

  • Kitzberger T, Veblen TT, Villalba R (1997) Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia, Argentina. J Biogeog 24:35–47

    Article  Google Scholar 

  • Kozlowski TT (1982) Water supply and tree growth: part I water deficits. For Abs 43:57–95

    Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, San Diego

    Google Scholar 

  • La Manna L, Rajchenberg M (2004) The decline of Austrocedrus chilensis forests in Patagonia, Argentina: soil features as predisposing factors. For Ecol Manage 190:345–357

    Article  Google Scholar 

  • La Manna L, Bava J, Collantes M, Rajchenberg M (2006) Características estructurales de los bosques de Austrocedrus chilensis afectados por “mal del ciprés” en Patagonia, Argentina. Bosque 27:135–145

    Google Scholar 

  • Labraga JC (1998) Escenario de Cambio Climático para la Argentina. Ciencia Hoy 8:18–25

    Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice Hall, New Jersey

    Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Book  Google Scholar 

  • Monserud RA (1976) Simulation of forest tree mortality. For Sci 22:438–444

    Google Scholar 

  • Mooney CZ, Duval RD (1993) Bootstrapping: a nonparametric approach to statistical inference. Sage university paper series on quantitative applications in the social sciences, series no. 07–095. Newbury Park, California

    Google Scholar 

  • Palmer WC (1965) Meteorological Drought. U.S. Dep. Commerce. Weather Bureau Res. Paper 45

  • Pedersen B (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93

    Article  Google Scholar 

  • Rajchenberg M, Cwielong PP (1993) El Mal del Ciprés (Austrocedrus chilensis): su relación con las pudriciones radiculares y el sitio. Congreso Forestal Argentino y Latinoamericano, Paraná, Entre Ríos

    Google Scholar 

  • Schulman E (1956) Dendroclimatic change in semiarid America. University of Arizona Press, Tucson

    Google Scholar 

  • Servicio Meteorológico Nacional (1981) Estadísticas climatológicas 1971–1980. Serie B. N°35. Servicio Meteorológico Nacional, Buenos Aires

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Suarez M, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus-site, climatic sensitivity and growth trends. J Ecol 92:954–966

    Article  Google Scholar 

  • Swetnam TW (1993) Fire history and climate change in giant sequoia groves. Science 262:885–889

    Article  PubMed  Google Scholar 

  • Tortorelli LA (1947) Los incendios de bosques en la Argentina. Ministerio de Agricultura de la Nación, Buenos Aires

    Google Scholar 

  • Varsavsky E, Bettuci L, Rodríguez García D, Gómez C (1975) Observaciones preliminares sobre la mortalidad del ciprés (Austrocedrus chilensis) en los bosques patagónicos. Fundación Bariloche, publicación Nº 19

  • Veblen TT, Hadley KS, Reid MS, Rebertus AJ (1991) Methods of detecting past spruce beetle outbreaks in rocky mountain subalpine forests. Can J For Res 21:242–254

    Article  Google Scholar 

  • Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of southern America. In: Enright NJ, Hill RS (eds) Ecology of the southern conifers. Melbourne University Press, Melbourne, pp 120–155

    Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monog 69:47–67

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997a) Regional patterns of tree population age structures in northern Patagonia: climatic and disturbance influences. J Ecol 85:113–124

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997b) Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Can J For Res 27:580–597

    Article  Google Scholar 

  • Villalba R, Veblen TT (1998) Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79:2624–2640

    Article  Google Scholar 

  • Villalba R, Cook ER, Jacoby GC, D’Arrigo RD, Veblen TT, Jones PD (1998) Tree-ring based reconstruction of northern Patagonia precipitation since AD 1600. Holocene 8:659–674

    Article  Google Scholar 

  • Waring RH, Pitman GB (1985) Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 66:889–897

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Willis B (1914) El norte de la Patagonia, naturaleza y riquezas. Tomo I. Ministerio de Obras Públicas, Buenos Aires

    Google Scholar 

  • Woodward M (1999) Epidemiology: study design and data analysis. Chapman and Hall/CRC, Boca Ratón, Florida

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Agencia Nacional de Promoción Científica y Tecnológica of Argentina (PICT 25518) and by a CONICET doctoral fellowship (National Council for Scientific and Technical Research of Argentina). We are grateful to Marcelo Arturi, Mariano S. Morales, María Laura Suarez, Alberto Ripalta and Andrés Manceñido for research assistance. We also thank two anonymous reviewers for helping to improve the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio A. Mundo.

Additional information

Communicated by A. Gessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundo, I.A., El Mujtar, V.A., Perdomo, M.H. et al. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees 24, 561–570 (2010). https://doi.org/10.1007/s00468-010-0427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0427-8

Keywords

Navigation