Skip to main content
Log in

Why do parasitized hosts look different? Resolving the “chicken-egg” dilemma

  • Population Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Phenotypic differences between infected and non-infected hosts are often assumed to be the consequence of parasite infection. However, pre-existing differences in hosts’ phenotypes may promote differential susceptibility to infection. The phenotypic variability observed within the host population may therefore be a cause rather than a consequence of infection. In this study, we aimed at disentangling the causes and the consequences of parasite infection by calculating the value of a phenotypic trait (i.e., the growth rate) of the hosts both before and after infection occurred. That procedure was applied to two natural systems of host–parasite interactions. In the first system, the infection level of an ectoparasite (Tracheliastes polycolpus) decreases the growth rate of its fish host (the rostrum dace, Leuciscus leuciscus). Reciprocally, this same phenotypic trait before infection modulated the future level of host sensitivity to the direct pathogenic effect of the parasite, namely the level of fin degradation. In the second model, causes and consequences linked the growth rate of the fish host (the rainbow smelt, Osmerus mordax) and the level of endoparasite infection (Proteocephalus tetrastomus). Indeed, the host’s growth rate before infection determined the number of parasites later in life, and the parasite biovolume then decreased the host’s growth rate of heavily infected hosts. We demonstrated that reciprocal effects between host phenotypes and parasite infection can occur simultaneously in the wild, and that the observed variation in the host phenotype population was not necessarily a consequence of parasite infection. Disentangling the causality of host–parasite interactions should contribute substantially to evaluating the role of parasites in ecological and evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albon SD, Stien A, Irvine RJ, Langvatn R, Ropstad E, Halvorsen O (2002) The role of parasites in the dynamics of a reindeer population. P Roy Soc B-Biol Sci 269:1625–1632

    Article  CAS  Google Scholar 

  • Arbuckle JL (2003) Amos for Windows. Analysis of moment structures (version 5). SmallWaters, Chicago. http://www.smallwaters.com/amos/

  • Arnott SA, Barber I, Huntingford FA (2000) Parasite-associated growth enhancement in a fish-cestode system. Proc R Soc Lond B Biol Sci 267:657–663

    Article  CAS  Google Scholar 

  • Barber I (2005) Parasites grow larger in faster growing fish hosts. Int J Parasitol 35:137–143

    Article  PubMed  Google Scholar 

  • Barber I, Svensson PA (2003) Effects of experimental Schistocephalus solidus infections on growth, morphology and sexual development of female three-spined sticklebacks, Gasterosteus aculeatus. Parasitology 126:359–367

    Article  PubMed  CAS  Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 10:131–165

    Article  Google Scholar 

  • Bell AM, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834. doi:810.1111/j.1461-0248.2007.01081.x

    Article  PubMed  Google Scholar 

  • Bize P, Roulin A, Bersier LF, Pfluger D, Richner H (2003) Parasitism and developmental plasticity in Alpine swift nestlings. J Anim Ecol 72:633–639

    Article  Google Scholar 

  • Blair L, Webster JP (2007) Dose-dependent schistosome-induced mortality and morbidity risk elevates host reproductive effort. J Evol Biol 20:54–61. doi:10.1111/j.1420-9101.2006.01230.x

    Article  PubMed  CAS  Google Scholar 

  • Bourque JF, Dodson JJ, Ryan DAJ, Marcogliese DJ (2006) Cestode parasitism as a regulator of early life-history survival in an estuarine population of rainbow smelt Osmerus mordax. Mar Ecol Prog Ser 314:295–307

    Article  Google Scholar 

  • Campana SE, Jones CM (1992) Analysis of otolith microstructure data. In: Stevenson DK, Campana SE (eds) Otolith microstructure examination and analysis. Canadian Special Publication in Fish and Aquatic Sciences, Ottawa, pp 73–100

    Google Scholar 

  • Combes C (1991) Ethological aspect of parasite transmission. Am Nat 138:866–880

    Article  Google Scholar 

  • Combes C (1998) Parasitism. The ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Finley RJ, Forrester GE (2003) Impact of ectoparasites on the demography of a small reef fish. Mar Ecol Prog Ser 248:305–309

    Article  Google Scholar 

  • Francis R (1990) Back-calculation of fish length. A critical review. J Fish Biol 36:883–902

    Article  Google Scholar 

  • Hall SR, Sivars-Becker L, Becker C, Duffy MA, Tessier AJ, Caceres CE (2007) Eating yourself sick: transmission of disease as a function of foraging ecology. Ecol Lett 10:207–218. doi:210.1111/j.1461-0248.2007.01011.x

    Article  PubMed  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271

    Article  PubMed  Google Scholar 

  • Holmstad PR, Jensen KH, Skorping A (2006) Vector-borne parasites decrease host mobility: a field test of freeze or flee behaviour of willow ptarmigan. Int J Parasitol 36:735–740

    Article  PubMed  Google Scholar 

  • Hurd H (2001) Host fecundity reduction: a strategy for damage limitation? Trends Parasitol 17:363–368

    Article  PubMed  CAS  Google Scholar 

  • Hutchings MR, Gordon IJ, Kyriazakis I, Robertson E, Jackson F (2002) Grazing in heterogeneous environments: infra- and supra-parasite distributions determine herbivore grazing decisions. Oecologia 132:453–460

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217

    Article  PubMed  Google Scholar 

  • Lambrechts L, Fellous S, Koella JC (2006) Coevolutionary interactions between host and parasite genotypes. Trends Parasitol 22:12–16

    Article  PubMed  Google Scholar 

  • Lauder GV, Drucker EG (2002) Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. News Physiol Sci 17:235–240

    PubMed  Google Scholar 

  • Lello J, Boag B, Hudson PJ (2005) The effect of single and concomitant pathogen infections on condition and fecundity of the wild rabbit (Oryctolagus cuniculus). Int J Parasitol 35:1509–1515

    Article  PubMed  CAS  Google Scholar 

  • Loot G, Poulin R, Lek S, Guegan JF (2002) The differential effects of Ligula intestinalis (L.) plerocercoids on host growth in three natural populations of roach, Rutilus rutilus (L.). Ecol Freshw Fish 11:168–177

    Article  Google Scholar 

  • Loot G, Poulet N, Reyjol Y, Blanchet S, Lek S (2004) The effects of the ectoparasite Tracheliastes polycolpus (Copepoda: Lernaeopodidae) on the fins of rostrum dace (Leuciscus leuciscus burdigalensis). Parasitol Res 94:16–23

    Article  PubMed  Google Scholar 

  • Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325

    Article  Google Scholar 

  • Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman & Hall, New York

    Google Scholar 

  • Minchella DJ (1985) Host life-history variation in response to parasitism. Parasitology 90:205–216

    Article  Google Scholar 

  • Moore J, Gotelli NJ (1990) A phylogenetic perspective on the evolution of altered host behaviours: a critical look at the manipulation hypothesis. In: Barnard CJ, Behnke JM (eds) Parasitism and host behaviour. Taylor and Francis, London, pp 193–233

    Google Scholar 

  • Nilsson JA (2003) Ectoparasitism in marsh tits: costs and functional explanations. Behav Ecol 14:175–181

    Article  Google Scholar 

  • Olendorf R, Rodd FH, Punzalan D, Houde AE, Hurt C, Reznick DN, Hughes KA (2006) Frequency-dependent survival in natural guppy populations. Nature 441:633–636

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci USA 95:3714–3719

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1998) Evolutionary ecology of parasites: from individuals to communities. Chapman & Hall, London

    Google Scholar 

  • Poulin R, Marshall LJ, Spencer HG (2000) Metazoan parasite species richness and genetic variation among freshwater fish species: cause or consequence? Int J Parasitol 30:697–703

    Article  PubMed  CAS  Google Scholar 

  • Saino N, Calza S, Moller AP (1998) Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestlings. Oikos 81:217–228

    Article  Google Scholar 

  • Scholz T, Marcogliese DJ, Bourque JF, Škeříková A, Dodson JJ (2004) Occurrence of Proteocephalus tetrastomus (Rudolphi, 1810) (Cestoda: Proteocephalidea) in larval rainbow smelt (Osmerus mordax) in North America: identification of a potential pathogen confirmed. J Parasitol 90:425–427

    Article  PubMed  CAS  Google Scholar 

  • Schrank AJ, Webb PW (1998) Do body and fin form affect the abilities of fish to stabilize swimming during maneuvers through vertical and horizontal tubes? Environ Biol Fish 53:365–371

    Article  Google Scholar 

  • Schultz ET, Topper M, Heins DC (2006) Decreased reproductive investment of female threespine stickleback Gasterosteus aculeatus infected with the cestode Schistocephalus solidus: parasite adaptation, host adaptation, or side effect? Oikos 114:303–310

    Article  Google Scholar 

  • Seivwright LJ, Redpath SM, Mougeot F, Leckie F, Hudson PJ (2005) Interactions between intrinsic and extrinsic mechanisms in a cyclic species: testosterone increases parasite infection in red grouse. Proc R Soc B Biol Sci 272:2299–2304

    Article  CAS  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology: a user’s guide to path analysis. structural equations and causal inference, Cambridge University Press, New York

    Google Scholar 

  • Sirois P, Lecomte F, Dodson JJ (1998) An otolith-based back-calculation method to account for time-varying growth rate in rainbow smelt (Osmerus mordax). Can J Fish Aquat Sci 55:2662–2671

    Article  Google Scholar 

  • Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Process 68:185–199

    Article  Google Scholar 

  • Walker PD, Abbink W, van der Velde G, Wendelaar Bonga SE (2006) A new record of Tracheliastes maculatus Kollar, 1835 (Copepoda, Siphonostomatoida, Lernaeopodidae) on common bream (Abramis brama (L., 1758)) in the Netherlands. Crustaceana 79:1015–1019

    Article  Google Scholar 

  • Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. Proc Natl Acad Sci USA 104:9335–9339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the many field assistants that helped in sampling fish. We also thank P. Heeb for stimulating discussions, S. Brosse and two anonymous referees for constructive comments on the manuscript and S. Kohler for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Blanchet.

Additional information

Communicated by Steven Kohler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, S., Méjean, L., Bourque, JF. et al. Why do parasitized hosts look different? Resolving the “chicken-egg” dilemma. Oecologia 160, 37–47 (2009). https://doi.org/10.1007/s00442-008-1272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1272-y

Keywords

Navigation