Skip to main content

Advertisement

Log in

Molecular characterization of an α-N-acetylgalactosaminidase from Clonorchis sinensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 November 2012

Abstract

The α-N-acetylgalactosaminidase (α-NAGAL) is an exoglycosidase that selectively cleaves terminal α-linked N-acetylgalactosamines from a variety of sugar chains. A complementary DNA (cDNA) clone encoding a novel Clonorchis sinensis α-NAGAL (Cs-α-NAGAL) was identified in the expressed sequence tags database of the adult C. sinensis liver fluke. The complete coding sequence was 1,308 bp long and encoded a 436-residue protein. The selected glycosidase was manually curated as α-NAGAL (EC 3.2.1.49) based on a composite bioinformatics analysis including a search for orthologues, comparative structure modeling, and the generation of a phylogenetic tree. One orthologue of Cs-α-NAGAL was the Rattus norvegicus α-NAGAL (accession number: NP_001012120) that does not exist in C. sinensis. Cs-α-NAGAL belongs to the GH27 family and the GH-D clan. A phylogenetic analysis revealed that the GH27 family of Cs-α-NAGAL was distinct from GH31 and GH36 within the GH-D clan. The putative 3D structure of Cs-α-NAGAL was built using SWISS-MODEL with a Gallus gallus α-NAGAL template (PDB code 1ktb chain A); this model demonstrated the superimposition of a TIM barrel fold (α/β) structure and substrate binding pocket. Cs-α-NAGAL transcripts were detected in the adult worm and egg cDNA libraries of C. sinensis but not in the metacercaria. Recombinant Cs-α-NAGAL (rCs-α-NAGAL) was expressed in Escherichia coli, and the purified rCs-α-NAGAL was recognized specifically by the C. sinensis-infected human sera. This is the first report of an α-NAGAL protein in the Trematode class, suggesting that it is a potential diagnostic or vaccine candidate with strong antigenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  • Bouvard V et al (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10(4):321–322

    Article  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–238

    Article  PubMed  CAS  Google Scholar 

  • Cho PY, Kim TI, Whang SM, Hong SJ (2008) Gene expression profile of Clonorchis sinensis metacercariae. Parasitol Res 102(2):277–282

    Article  PubMed  Google Scholar 

  • Choi D et al (2006) Cholangiocarcinoma and Clonorchis sinensis infection: a case–control study in Korea. J Hepatol 44(6):1066–1073

    Article  PubMed  Google Scholar 

  • Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov Today 12(9–10):389–395

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–469

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Fan Y et al (2011) Molecular cloning, expression, and immunolocalization of the NAD(+)-dependent glycerol 3-phosphate dehydrogenase (GPD) from Clonorchis sinensis. Parasitol Res 109(3):621–626

    Article  PubMed  Google Scholar 

  • Fujino T, Ishii Y (1986) Comparative histochemical studies of glycosidase activity in some helminths. J Helminthol 60(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Gan W et al (2010) Reverse vaccinology approach identify an Echinococcus granulosus tegumental membrane protein enolase as vaccine candidate. Parasitol Res 106(4):873–882

    Article  PubMed  Google Scholar 

  • Gasteiger E et al. (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

  • Harun-Or-Rashid M et al (2010) Purification and characterization of alpha-N-acetylgalactosaminidases I and II from the starfish Asterina amurensis. Biosci Biotechnol Biochem 74(2):256–261

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696

    PubMed  Google Scholar 

  • Henrissat B, Teeri TT, Warren RA (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352–354

    Article  PubMed  CAS  Google Scholar 

  • Hocker B, Claren J, Sterner R (2004) Mimicking enzyme evolution by generating new (beta/alpha)8-barrels from (beta/alpha)4-half-barrels. Proc Natl Acad Sci U S A 101(47):16448–16453

    Article  PubMed  Google Scholar 

  • Irwin J et al (2004) Glycosidase activity in the excretory-secretory products of the liver fluke, Fasciola hepatica. Parasitology 129(04):465–472

    Article  PubMed  CAS  Google Scholar 

  • Lang D, Thoma R, Henn-Sax M, Sterner R, Wilmanns M (2000) Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289(5484):1546–1550

    Article  PubMed  CAS  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  PubMed  Google Scholar 

  • Lee MR et al (2011) The identification of antigenic proteins: 14-3-3 protein and propionyl-CoA carboxylase in Clonorchis sinensis. Mol Biochem Parasitol 182(1–2):1–6

    PubMed  Google Scholar 

  • Lun ZR et al (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41

    Article  PubMed  Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 33(Web Server issue):W677–680

    Article  PubMed  CAS  Google Scholar 

  • Naumoff DG (2005) GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily. BMC Genomics 6:112

    Article  PubMed  Google Scholar 

  • Oliveira MF et al (2000) Haemozoin in Schistosoma mansoni. Mol Biochem Parasitol 111(1):217–221

    Article  PubMed  CAS  Google Scholar 

  • Pearl F et al (2005) The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res 33(Database issue):D247–251

    Article  PubMed  CAS  Google Scholar 

  • Peterson ME, Chen F, Saven JG, Roos DS, Babbitt PC, Sali A (2009) Evolutionary constraints on structural similarity in orthologs and paralogs. Protein Sci 18(6):1306–1315

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–120

    Article  PubMed  CAS  Google Scholar 

  • Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19(17–19):2688–2691

    Article  PubMed  CAS  Google Scholar 

  • Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541

    Article  PubMed  CAS  Google Scholar 

  • Sterner R, Hocker B (2005) Catalytic versatility, stability, and evolution of the (beta/alpha)8-barrel enzyme fold. Chem Rev 105(11):4038–4055

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Egerton G, Underwood AP, Sakuda S, Bianco AE (2001) Expression and secretion of a larval-specific chitinase (family 18 glycosyl hydrolase) by the infective stages of the parasitic nematode, Onchocerca volvulus. J Biol Chem 276(45):42557–42564

    Article  PubMed  CAS  Google Scholar 

  • Yoo WG et al (2011) Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5(6):1–14

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Pathogenic Proteome Management Program of the National Institute of Health, Ministry of Health, and Welfare, Republic of Korea (NIH 48004847-300).

Competing interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Won Ju or Won-Ja Lee.

Additional information

Myoung-Ro Lee and Won Gi Yoo contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MR., Yoo, W.G., Kim, YJ. et al. Molecular characterization of an α-N-acetylgalactosaminidase from Clonorchis sinensis . Parasitol Res 111, 2149–2156 (2012). https://doi.org/10.1007/s00436-012-3063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3063-y

Keywords

Navigation