Skip to main content
Log in

Improved hydrogen evolution and interesting luminescence properties of rare Earth ion-doped ZnS nanoparticles

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare Earth-doped nanocrystalline semiconductor compounds can create novel pathways to enhance the hydrogen evolution reaction. In this study, terbium-doped zinc sulfide (ZnS) nanoparticles (NPs) were fabricated using an economical and facile co-precipitation method. STEM results revealed that the synthesized samples were composed of NPs with a uniform size distribution. The spatial distribution images showed that terbium ions were randomly distributed in the ZnS matrix with the anticipated stoichiometry. Transmission electron microscopy confirmed the presence of NPs. Terbium doping decreased the optical band gap of the ZnS NPs. Terbium-induced emission peaks were recognized at 465, 490, 545, 587, and 621 nm, demonstrating that the dopant ions were included in the parent matrix. The terbium (2 at%)-doped ZnS NPs exhibited an enhanced hydrogen evolution capability under simulated solar light. Therefore, the results of this study heavily suggest that the terbium-doped ZnS NPs are beneficial candidates for hydrogen gas generation. This study is the first to investigate the evolution of H2 using the ZnS:Tb system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 488–1495 (2001)

    Google Scholar 

  2. B. Poornaprakash, U. Chalapathi, M. Kumar, B. Rajitha, B.P. Reddy, S.V.P. Vattikuti, S.H. Park, Tailoring the optical, magnetic, and photocatalytic properties of ZnS quantum dots by rare-earth ion doping. Chem. Phys. Lett. 753, 137609 (2020)

    Google Scholar 

  3. Z.Y. Jiang, K.R. Zhu, Z.Q. Lin, S.W. Jin, G. Li, Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol-gel method. Rare Met. 37, 881–885 (2018)

    Google Scholar 

  4. D.H. Hwang, J.H. Ahn, K.N. Hui, K.S. Hui, Y.G. Son, Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering. Nanoscale Res. Lett. 7, 26 (2012)

    ADS  Google Scholar 

  5. Y. Liu, Y. He, Z. Yuan, J. Zhu, J. Han, Numerical and experimental study on thermal shock damage of CVD ZnS infrared window material. J. Alloys. Compd. 589, 101–108 (2014)

    Google Scholar 

  6. H. Yang, C. Huang, X. Su, A. Tang, Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles. J. Alloys. Compd. 402, 274–277 (2005)

    Google Scholar 

  7. H.Y. Yang, S.F. Yu, J. Yan, L.D. Zhang, Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res. Lett. 5, 809–812 (2010)

    ADS  Google Scholar 

  8. T. Kuwabara, M. Nakamoto, Y. Kawahara, T. Yamaguchi, K. Takahashi, Characterization of ZnS- layer-inserted bulk-heterojunction organic solar cells by ac impedance spectroscopy. J. Appl. Phys. 105(12), 124513 (2009)

    ADS  Google Scholar 

  9. C.A. Ortiz, Properties of sputtered ZnS and ZnSA (A = Er, Yb) films grown at low substrate temperatures. J Vac Sci Technol A Vacuum Surf Film. 35(3), 031505 (2017)

    ADS  Google Scholar 

  10. S. Ummartyotin, Y. Infahsaeng, A comprehensive review on ZnS: From synthesis to an approach on solar cell. Rene Sustain Energy Rev. 55, 17–24 (2016)

    Google Scholar 

  11. D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, Effect of annealing temperature on optical and magnetic properties of Cr doped ZnS nanoparticles. Solid State Commun. 152(7), 596–602 (2012)

    ADS  Google Scholar 

  12. B. Poornaprakash, D.A. Reddy, G. Murali, N.M. Rao, R.P. Vijayalakshmi, B.K. Reddy, Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. J. Alloys Compd. 577, 79–85 (2013)

    Google Scholar 

  13. S. Kumar, C.L. Chen, C.L. Dong, Y.K. Hob, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Room temperature ferromagnetism in Ni doped ZnS nanoparticles. J. Alloys Compd. 554, 357–362 (2013)

    Google Scholar 

  14. B. Poornaprakash, S.V.P. Vattikuti, K. Subramanyam, R. Cheruku, K.C. Devarayapalli, Y.L. Kim, V.R.M. Reddy, H. Park, M.S.P. Reddy, Photoluminescence and hydrogen evolution properties of ZnS: Eu quantum dots. Ceram. Int. 47(20), 28976–28984 (2021)

    Google Scholar 

  15. S. Hou, Y. Yuen, H. Mao, J. Wang, Z. Zhu, Photoluminescence properties of the Eu3+-doped ZnS nanocrystals and the crystal-field analysis. J Phys D. 42, 215105 (2009)

    ADS  Google Scholar 

  16. B. Poornaprakash, U. Chalapathi, Y. Suh, S.V.P. Vattikuti, M.S.P. Reddy, S.H. Park, Terbium-doped ZnS quantum dots: Structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceram. Int. 44, 11724–11729 (2018)

    Google Scholar 

  17. J.C.G. Bünzli, Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39(1), 53–61 (2006)

    Google Scholar 

  18. J.Y. Park, E.J. Jeon, Y.H. Choa, B.S. Kim, Optical and structural properties of ZnSe quantum dot with europium. J. Lumin. 208, 145–149 (2019)

    Google Scholar 

  19. X. Yao, T. Liu, X. Liu, L. Lu, Loading of CdS nanoparticles on the (101) surface of elongated TiO2nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting. Chem. Eng. J. 255, 28–39 (2014)

    Google Scholar 

  20. M. de Oliveira Melo, L.A. Silva, Visible light-induced hydrogen production from glycerol aqueous solution on hybrid Pt–CdS–TiO2 photocatalysts. J Photochem Photobiol A. 226, 36–41 (2011)

    Google Scholar 

  21. L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B Environ. 117, 268–274 (2012)

    Google Scholar 

  22. L. Barreto, A. Makihira, K. Riahi, The hydrogen economy in the 21st century: a sustainable development scenario. Int. J. Hydrogen Energ. 28, 267–284 (2003)

    Google Scholar 

  23. S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: from production to applications. Renew. Sustain. Energy Rev. 43, 1151–1158 (2015)

    Google Scholar 

  24. A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37–38 (1972)

    ADS  Google Scholar 

  25. H. Zhang, C. Hu, S. Chen, K. Zhang, X. Wang, Synthesis of SnO2 Nanostructures and Their Application for Hydrogen Evolution Reaction. Catal. Lett. 142, 809–815 (2012)

    Google Scholar 

  26. D. Wang, X. Li, L.L. Zheng, L.M. Qin, S. Li, P. Ye, Y. Li, J.P. Zou, Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 10, 19509 (2018)

    Google Scholar 

  27. X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong, Y. Li, Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chem. Commun. 48, 717–7719 (2012)

    Google Scholar 

  28. G. Ren, Z. Lin, B. Gilbert, J. Zhang, F. Huang, J. Liang, Evolution of ZnS Nanostructure Morphology under Interfacial Free-Energy Control. Chem. Mater. 20(7), 2438–2443 (2008)

    Google Scholar 

  29. H. Sun, H. Liu, M. Nie, Z. Zhao, Z. Xue, J. Liao, F. Xue, S. Zhang, M. Wu, T. Gao, Synthesis and hydrogen evolution reaction of nanosized Ag - ZnO coated MoS2. Ceram. Int. 47, 13994–14000 (2021)

    Google Scholar 

  30. D. Hayes, F. Grieser, D.N. Furlong, Kinetics of hydrogen production from illuminated CdS/Pt/Na2SO3 and ZnS/Pt/Na2S dispersions. J Chem Soc Faraday Trans. 86(21), 3637–3640 (1990)

    Google Scholar 

  31. S.K. Apte, S.N. Garaje, S.S. Arbuj, B.B. Kale, J.O. Baeg, U.P. Mulik, S.D. Naik, D.P. Amalnerkar, S.W. Gosavi, A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. J. Mater. Chem. 21(48), 19241–19248 (2011)

    Google Scholar 

  32. J.-F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88(24), 5903–5913 (1984)

    Google Scholar 

  33. G.J. Lee, H. Chuan, C.J.J. Wu, (In, Cu) Co-doped ZnS nanoparticles for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 44, 110–117 (2019)

    Google Scholar 

  34. G.J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew Energy 89, 18–26 (2016)

    Google Scholar 

  35. A. Kudo, M. Sekizawa, Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem. Commun. 47, 1371–1372 (2000)

    Google Scholar 

  36. X. Liu, Y. Zhang, S. Matsushima, T. Sugiyama, H. Hojo, H. Einaga, Rational design of Cu-Doped ZnS nanospheres for photocatalytic evolution of H2 with visible light. ACS Appl. Energy Mater. 5, 1849–1857 (2022)

    Google Scholar 

  37. B. Poornaprakash, H. Park, K. Subramanyam, S.V.P. Vattikuti, K.C. Devarayapalli, S.H. Nam, Y.L. Kim, M.S.P. Reddy, M.G. Hahm, V.R.M. Reddy, Doping-induced photocatalytic activity and hydrogen evolution of ZnS: V nanoparticles. Ceram. Int. 47, 26438–26446 (2021)

    Google Scholar 

  38. B. Poornaprakash, U. Chalapathi, M. Kumar, S. Ramu, S.V.P. Vattikuti, S.H. Park, Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by (Co, Er) co-doping. Mater. Lett. 273, 127887 (2020)

    Google Scholar 

  39. U. Holzwarth, N. Gibson, The Scherrer equation versus the “Debye-Scherrer equation.” Nature Nanotech 6, 534 (2011)

    ADS  Google Scholar 

  40. Z. Liang, J. Mu, L. Han, H. Yu, Microbe-Assisted synthesis and luminescence properties of monodispersed Tb3+-doped ZnS nanocrystals. J. Nanometer 16(1), 40 (2015)

    Google Scholar 

  41. N. Jing-Hua, H. Rui-Nian, L. Wen-Lian, L. Ming-Tao, Y. Tian-Zhi, Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals. J. Phys. D: Appl. Phys. 39, 2357–2360 (2006)

    ADS  Google Scholar 

  42. B. Poornaprakash, U. Chalapathi, P.T. Poojitha, S.V.P. Vattikuti, M.S.P. Reddy, (Al, Cu) Co-doped ZnS nanoparticles: structural, chemical, optical, and photocatalytic properties. J. Mater. Sci. Mater. Electron. 30, 9897–9902 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Korea funded by the Ministry of Science, ICT and Fusion Research (Grant No: 20201G1A1014959 and NRF-2022R1I1A1A01064248). This work was supported by the Technology development Program (S3038568) funded by the Ministry of SMEs and Startups (MSS, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Poornaprakash or Y. L. Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramu, S., Puneetha, P., Reddy, M.S.P. et al. Improved hydrogen evolution and interesting luminescence properties of rare Earth ion-doped ZnS nanoparticles. Appl. Phys. A 129, 106 (2023). https://doi.org/10.1007/s00339-023-06396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06396-5

Keywords

Navigation