Skip to main content
Log in

A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR.

Abstract

The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from ‘Zisai Pearl’ × ‘Red Fuji’. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein–protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The apple genome used was a version of the Malus × domestica genome GDDH13_v1.1 (GDDH13, https://iris.angers.inra.fr/gddh13/).

References

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717

    Article  CAS  PubMed  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernandez-Fernandez F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, van de Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090

    Article  CAS  PubMed  Google Scholar 

  • Blanpied GD, Silsby K (1992) Predicting harvest date windows for apples. Cornell Coop Ext 142:221. http://hdl.handle.net/1813/3299

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  CAS  PubMed  Google Scholar 

  • Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Li Z, Deng X (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123:869–879

    Article  PubMed  Google Scholar 

  • Costa F (2015) MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genet Genomes 11:819

    Article  Google Scholar 

  • Costa F, Stella S, van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus × domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus x domestica Borkh.) and pear (Pyrus communis). Tree Genet Genom 4:575–586

    Article  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, Magnago P, Gasperi F, Biasioli F (2012) Texture dynamics during postharvest cold storage ripening in apple (Malus × domestica Borkh.). Postharvest Biol Technol 69:54–63

    Article  Google Scholar 

  • Di Guardo MD, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68:1451–1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci USA 97:13579–13584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Hu D, Sun C, Ma Q, You C, Cheng L, Hao YJ (2016) MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiol 170:1315–1330

    Article  CAS  PubMed  Google Scholar 

  • Hu DG, Li YY, Zhang QY, Li M, Sun CH, Yu JQ, Hao YJ (2017) R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. Plant J 91:44–454

    Article  Google Scholar 

  • Hu DG, Yu JQ, Han PL, Xie XB, Sun CH, Zhang QY, Wang JH, Hao Y (2019) The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. New Phytol 221:1966–1982

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Han Z, Sun Y, Wang S, Wang T, Wang Y, Xu K, Zhang X, Xu X, Han Z, Wu T (2020) ERF4 affects fruit firmness through TPL4 by reducing ethylene production. Plant J 103:937–950

    Article  CAS  PubMed  Google Scholar 

  • Jia D, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z (2018) Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. Plant J 95:427–443

    Article  CAS  PubMed  Google Scholar 

  • Johnston JW, Hewett EW, Hertog MLATM, Harker FR (2001) Temperature induces differential softening responses in apple cultivars. Postharvest Biol Technol 23:185–196

    Article  Google Scholar 

  • King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • Kumar S, Chagne D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS ONE 7:e36674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen B, Migicovsky Z, Jeppesen AA, Gardner KM, Toldam-Andersen TB, Myles S, Orgaard M, Petersen MA, Pedersen C (2019) Genome-wide association studies in apple reveal loci for aroma volatiles, sugar composition, and harvest date. Plant Genome 12:180104

    Article  Google Scholar 

  • Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A (2016) Apple (Malus domestica Borkh.) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant J 88:735–748

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xu Y, Zhang L, Ji Y, Tan D, Yuan H, Wang A (2017) The Jasmonate activated transcription factor MdMYC2 regulates ethylene response factor and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 29:1316–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Chen S, Liu Z, Shan W, Chen J, Lu W, Lakshmanan P, Kuang J (2020) MabZIP74 interacts with MaMAPK11-3 to regulate the transcription of MaACO1/4 during banana fruit ripening. Postharvest Biol Technol 169:111293

    Article  CAS  Google Scholar 

  • Liu J, Shen F, Xiao Y, Fang H, Qiu C, Li W, Wu T, Xu X, Wang Y, Zhang X, Han Z (2020) Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genom 21:550

    Article  CAS  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Cameron P, Riccardo V, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus x domestica Borkh). BMC Plant Biol 13:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Gardner KM, Richards C, Chao CT, Schwaninger HR, Fazio G, Zhong G-Y, Myles S (2021a) Genomic consequences of apple improvement. Hortic Res 8:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, Burgher-MacLellan K, Somers DJ, Gong Y, Zhang Z, Vrebalov J, van Velzen R, Giovannoni JG, Rose JKC, Myles S (2021b) Apple ripening is controlled by a NAC transcription factor. Front Genet 12:671300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muranty H, Troggio M, Sadok IB, Rifai MI, Auwerkerken A, Banchi E, Velasco R, Stevanato P, van de Weg WE, Di Guardo M, Kumar S, Laurens F, Bink MCAM (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 2:15060

    Article  PubMed  PubMed Central  Google Scholar 

  • Nybom H, Ahmadi-Afzadi M, Sehic J, Hertog M (2013) DNA marker-assisted evaluation of fruit firmness at harvest and post-harvest fruit softening in a diverse apple germplasm. Tree Genet Genom 9:279–290

    Article  Google Scholar 

  • Shen F, Huang Z, Zhang B, Wang Y, Zhang X, Wu T, Xu XF, Zhang X, Han Z (2019) Mapping gene markers for apple fruit ring rot disease resistance using a multi-omics approach. G3 Genes Genom Genet 9:1663–1678

    CAS  Google Scholar 

  • Shen F, Bianco L, Wu B, Tian Z, Wang Y, Wu T, Xu XF, Han Z, Velasco R, Fontana P, Zhang X (2022) A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. J Adv Res. https://doi.org/10.1016/j.jare.2022.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Vrebalov ZH, Xu Y, Yin X, Liu W, Liu Z, Sorensen I, Su G, Ma Q, Evanich D, Rose JKC, Fei Z, Van Eck J, Thannhauser T, Chen K, Giovannoni JJ (2021) A tomato lateral organ boundaries transcription factor, SlLOB1, predominantly regulates cell wall and softening components of ripening. Proc Natl Acad Sci USA 118:e2102486118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Shan W, Kuang J, Chen J, Lu W (2020) The basic helix-loop-helix transcription factor MabHLH7 positively regulates cell wall-modifying-related genes during banana fruit ripening. Postharvest Biol Technol 161:111068

    Article  CAS  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Chen C, Liu L, Wang X, Zheng W, Deng Y, Wang T, Huang Z, Xiao C, Zhou Q, Wang Y, Wu T, Xu X, Han ZH, Zhang X (2021a) Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. Plant Genome 14:e20084

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Shen F, Wang X, Zheng WY, Xiao C, Deng Y, Wang T, Huang ZY, Zhou Q, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ (2021b) Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. Plant Biotechnol J 19:1022–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lv Y, Wang Y, Rose JKC, Shen F, Han Z, Zhang X, Xu X, Wu T, Han Z (2016) TATA box insertion provides a selection mechanism underpinning adaptations to Fe deficiency. Plant Physiol 173:715–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z (2020a) Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genom 21:852

    Article  CAS  Google Scholar 

  • Zheng W, Shen F, Wang W, Wu B, Wang X, Xiao C, Tian Z, Yang X, Yang J, Wang Y, Wu T, Xu X, Han Z, Zhang X (2020b) Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. Plant Genome 13:e20047

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genom 4:555–562

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology) of the Ministry of Agriculture, People’s Republic of China, for providing the experimental platform.

Funding

This work was funded by the Modern Agricultural Industry Technology System (CARS-27), and the Key Research and Development Program of Hebei (21326353D; 21326308D). The funding bodies had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Renate Schmidt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

299_2022_2929_MOESM1_ESM.tif

Fig. S1 SNPs at the coding sequence did not alter the MdbHLH25 subcellular localization. The indicated eGFP constructs were transiently expressed in mcherry-N. benthamiana leaves and fluorescent images were obtained using confocal microscopy. Bars = 100 μm (TIF 99124 KB)

Table S1 Primers used for experimental validation in this study (XLSX 14 KB)

299_2022_2929_MOESM3_ESM.xlsx

Table S2 SNPs and InDels between the parental cultivar ‘Zisai Pearl’ and ‘Red Fuji’ within the overlapped QTL region (38426419–39485064 bp) on chromosome 16 of apple genome (XLSX 11 KB)

299_2022_2929_MOESM4_ESM.xlsx

Table S3 Phenotypic data of flesh firmness at harvest, flesh firmness retainability, flesh crispness at harvest, flesh crispness retainability, and KASP markers using 478 hybrids of three families derived from ‘Golden Delicious’, ‘Jonathan’, ‘Red Fuji’ and ‘Zisai Pearl’ (XLSX 90 KB)

299_2022_2929_MOESM5_ESM.xlsx

Table S4 The genotype effects of all markers using 478 hybrids from three families derived from ‘Golden Delicious’, ‘Jonathan’, ‘Red Fuji’ and ‘Zisai Pearl’ (XLSX 11 KB)

299_2022_2929_MOESM6_ESM.xlsx

Table S5 Joint genotype effects of markers on flesh firmness at harvest (FF), flesh crispness at harvest (FC), flesh firmness retainability (FFR), and flesh crispness retainability (FCR) phenotype values in hybrid plants from ‘Zisai Pearl’ (Z) × ‘Red Fuji’ (F), Z × ‘Golden Delicious’ (G), and ‘Jonathan’ (J) × G (XLSX 13 KB)

299_2022_2929_MOESM7_ESM.xlsx

Table S6 Phenotype values of flesh firmness/crispness at harvest and their retainability during cold storage of the parental cultivars (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wu, B., Liu, J. et al. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. Plant Cell Rep 41, 2379–2391 (2022). https://doi.org/10.1007/s00299-022-02929-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02929-z

Keywords

Navigation