Skip to main content
Log in

Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

9H-Carbazole and its derivatives are useful for versatile pharmacological applications. To obtain different derivatives of 9H-carbazole, 24 isolates of biphenyl-utilizing bacteria have been investigated regarding their ability to produce hydroxylated 9H-carbazole metabolites. Our analyses showed that 9H-carbazole was primarily converted into 9H-carbazol-1-ol (15 strains) and 9H-carbazol-3-ol (9 strains), while carbazol-9-ol was formed as a minor product (12 strains). The formation of 9H-carbazol-3-ol by the spontaneous release from the corresponding dihydrodiols was provided by the first-time detection of 3-hydroxy-1,2,3,9-tetrahydrocarbazol-4-one. The dependence of product yields on different parameters was exemplarily analyzed for Ralstonia sp. SBUG 290. Biphenyl-grown cells showed higher oxidation activities than cells cultivated with organic acids or nutrient broth, while co-cultivation of Ralstonia sp. SBUG 290 with biphenyl and 9H-carbazole led to an enhanced yield of 9H-carbazol-1-ol. The tested bacterial strains were also studied regarding their biotransformation of the two structure-related compounds 9H-fluorene and dibenzothiophene. Twenty-one strains primarily transformed 9H-fluorene into 9H-fluoren-9-ol and fluoren-9-one. Three strains accumulated benzo[c]chromen-6-one as a novel dead-end product during the incubation with 9H-fluorene, 9H-fluoren-9-ol, and fluoren-9-one. Dibenzothiophene has been mainly transformed into the dead-end product dibenzothiophene-5-oxide, while additional metabolites indicated that the transformation followed the so called Kodama pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews ER, Fleming RW, Grisar JM, Kihm JC, Wenstrup DL, Mayer GD (1974) Bis-basic-substituted polycyclic aromatic compounds. A new class of antiviral agents. 2. Tilorone and related bis-basic ethers of fluorenone, fluorenol, and fluorene. J Med Chem 17:882–886

    CAS  PubMed  Google Scholar 

  • Arbiser JL, Govindarajan B, Battle TE, Lynch R, Frank DA, Ushio-Fukai M, Perry BN, Stern DF, Bowden GT, Liu A, Klein E, Kolodziejski PJ, Eissa NT, Hossain CF, Nagle DG (2006) Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar. J Invest Dermatol 126:1396–1402

    CAS  PubMed  Google Scholar 

  • Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol 66:4528–4531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi D, Bosetti A, Cidaria D, Bernardi A, Gagliardi I, D’Amico P (1997) Oxidation of polycyclic aromatic heterocycles by Pseudomonas fluorescens. Appl Microbiol Biotechnol 47:596–599

    CAS  Google Scholar 

  • Bregman H, Williams D, Meggers E (2005) Pyrido[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-diones: synthesis, cyclometalation, and protein kinase inhibition. Synthesis 9:1521–1527

    Google Scholar 

  • Brendle JJ, Outlaw A, Kumar A, Boykin DW, Patrick DA, Tidwell RR, Werbovetz KA (2002) Antileishmanial activities of several classes of aromatic dications. Antimicrob Agents Chemother 46:797–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bressler DC, Fedorak PM (2000) Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can J Microbiol 46:397–409

    CAS  PubMed  Google Scholar 

  • Casellas M, Grifoll M, Bayona JM, Solanas AM (1997) New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl Environ Microbiol 63:819–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi TA, Czerwonka R, Fröhner W, Krahl MP, Reddy KR, Franzblau SG, Knölker HJ (2006) Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. ChemMedChem 1:812–815

    CAS  PubMed  Google Scholar 

  • Coghlan MJ, Kym PR, Elmore SW, Wang AX, Luly JR, Wilcox D, Stashko M, Lin CW, Miner J, Tyree C, Nakane M, Jacobsen P, Lane BC (2001) Synthesis and characterization of non-steroidal ligands for the glucocorticoid receptor: selective quinoline derivatives with prednisolone-equivalent functional activity. J Med Chem 44:2879–2885

    CAS  PubMed  Google Scholar 

  • De Boer TD, Backer HJ (1956) Diazomethane. In: Leonard NJ (ed) Organic synthesis. vol. 36. Wiley, New York, pp 14–16

    Google Scholar 

  • Del Poeta M, Schell WA, Dykstra CC, Jones SK, Tidwell RR, Kumar A, Boykin DW, Perfect JR (1998) In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles. Antimicrob Agents Chemother 42:2503–2510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: Structure–function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338(2005):175–190

    CAS  PubMed  Google Scholar 

  • Frassinetti S, Setti L, Corti A, Farrinelli P, Montevecchi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44:289–297

    Article  CAS  PubMed  Google Scholar 

  • Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grifoll M, Selifonov SA, Chapman PJ (1994) Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl Environ Microbiol 60:2438–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haddock JD, Gibson DT (1995) Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol 177:5834–5839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann LG, Higuchi RI, Zhi L, Edwards JP, Wang XN, Marchke KB, Kong JW, Farmer LJ, Jones TK (1998) Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1,2-dihydropyridono[5,6-g]quinolines. J Med Chem 41:623–639

    CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hundt K, Wagner M, Becher D, Hammer E, Schauer F (1998) Effect of selected environmental factors on degradation and mineralization of biaryl compounds by the bacterium Ralstonia picketii in soil and compost. Chemosphere 36:2321–2335

    CAS  PubMed  Google Scholar 

  • Karapire C, Kolancilar H, Oyman Ü, Icli S (2002) Fluorescence emission and photooxidation studies with 5,6- and 6,7-benzocoumarins and a 5,6-benzochromone under direct and concentrated sun light. J Photochem Photobiol A Chem 153:173–184

    CAS  Google Scholar 

  • Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Microbial conversion of petro-sulfur compounds. 4. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric Biol Chem 37:45–50

    CAS  Google Scholar 

  • Kokubun T, Harborne JB, Eagles J, Waterman PG (1995) Four dibenzofuran phytoalexins from the sapwood of Mespilus germanica. Phytochemistry 39:1039–1042

    CAS  Google Scholar 

  • L'Abbée JB, Barriault D, Sylvestre M (2005) Metabolism of dibenzofuran and dibenzo-p-dioxin by the biphenyl dioxygenase of Burkholderia xenovorans LB400 and Comamonas testosteroni B-356. Appl Microbiol Biotechnol 67:506–514

    PubMed  Google Scholar 

  • Liger F, Popowycz F, Besson T, Picot L, Galmarini CM, Joseph B (2007) Synthesis and antiproliferative activity of clausine E, mukonine, and koenoline bioisosteres. Bioorg Med Chem 15:5615–5619

    CAS  PubMed  Google Scholar 

  • Meragelman KM, McKee TC, Boyd MR (2000) Siamenol, a new carbazole alkaloid from Murraya siamensis. J Nat Prod 63:427–428

    CAS  PubMed  Google Scholar 

  • Meyer S, Steinhart H (2001) Fate of PAHs and hetero-PAHs during biodegradation in a model soil/compost-system: formation of extractable metabolites. Water Air Soil Pollut 132:215–231

    CAS  Google Scholar 

  • Molenaar P, Christ T, Ravens U, Kaumann A (2006) Carvedilol blocks β2- more than β1-adrenoceptors in human heart. Cardiovasc Res 69:128–139

    CAS  PubMed  Google Scholar 

  • Nojiri H, Omori T (2002) Molecular bases of aerobic bacterial degradation of dioxins: involvement of angular deoxygenation. Biosci Biotechnol Biochem 66:2001–2016

    CAS  PubMed  Google Scholar 

  • Nojiri H, Nam JW, Kosaka M, Morii KI, Takemura T, Furihata K, Yamane H, Omori T (1999) Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J Bacteriol 181:3105–3113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular deoxygenation. J Gen Appl Microbiol 47:279–305

    CAS  PubMed  Google Scholar 

  • Resnick SM, Gibson DT (1996) Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol 62:4073–4080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick SM, Torok DS, Gibson DT (1993) Oxidation of carbazole to 3-hydroxycarbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase. FEMS Microbiol Lett 113:297–302

    CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Cho IK, Li QX (2006) Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. Int Biodeterior Biodegradation 58:36–43

    CAS  Google Scholar 

  • Sietmann R, Hammer E, Moody J, Cerniglia CE, Schauer F (2000) Hydroxylation of biphenyl by the yeast Trichosporon mucoides. Arch Microbiol 174:353–361

    CAS  PubMed  Google Scholar 

  • Stope MB, Becher D, Hammer E, Schauer F (2002) Cometabolic ring fission of dibenzofuran by Gram-negative and Gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 59:62–67

    CAS  PubMed  Google Scholar 

  • Suenaga H, Goto M, Furukawa K (2001) Emergence of multifunctional oxygenase activities by random priming recombination. J Biol Chem 276:22500–22506

    CAS  PubMed  Google Scholar 

  • Sun W, Cama LD, Birzin ET, Warrier S, Locco L, Mosley R, Hammond ML, Rohrer SP (2006) 6H-Benzo[c]chromen-6-one derivatives as selective ERβ agonists. Bioorg Med Chem Lett 16:1468–1472

    CAS  PubMed  Google Scholar 

  • van Herwijnen R, Wattiau P, Bastiaens L, Daal L, Jonker L, Springael D, Govers HAJ, Parsons JR (2003) Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res Microbiol 154:199–206

    PubMed  Google Scholar 

  • Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F (2005) The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol 98:635–645

    CAS  PubMed  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:398–405

    CAS  PubMed  Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Biotransformation of fluorene, diphenyl ether, dibenzo-p-dioxin and carbazole by Janibacter sp. Biotechnol Lett 26:479–486

    CAS  PubMed  Google Scholar 

  • Zhi L, Tegley CM, Marschke KB, Mais DE, Jones TK (1999) 5-Aryl-1,2,3,4-tetrahydrochromeno[3,4-f]quinolin-3-ones as a novel class of nonsteroidal progesterone receptor agonists: effect of A-ring modification. J Med Chem 42:1466–1472

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the scholarship program of the German Federal Environmental Foundation (DBU). We thank M. Lalk, Institute of Pharmacy, University of Greifswald for the recording of NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen Waldau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldau, D., Methling, K., Mikolasch, A. et al. Characterization of new oxidation products of 9H-carbazole and structure related compounds by biphenyl-utilizing bacteria. Appl Microbiol Biotechnol 81, 1023–1031 (2009). https://doi.org/10.1007/s00253-008-1723-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1723-8

Keyword

Navigation