Skip to main content
Log in

Actin Gene Family Dynamics in Cryptomonads and Red Algae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Here we present evidence for a complex evolutionary history of actin genes in red algae and cryptomonads, a group that acquired photosynthesis secondarily through the engulfment of a red algal endosymbiont. Four actin genes were found in the nuclear genome of the cryptomonad, Guillardia theta, and in the genome of the red alga, Galdieria sulphuraria, a member of the Cyanidiophytina. Phylogenetic analyses reveal that the both organisms possess two distinct sequence types, designated “type-1” and “type-2.” A weak but consistent phylogenetic affinity between the cryptomonad type-2 sequences and the type-2 sequences of G. sulphuraria and red algae belonging to the Rhodophytina was observed. This is consistent with the possibility that the cryptomonad type-2 sequences are derived from the red algal endosymbiont that gave rise to the cryptomonad nucleomorph and plastid. Red algae as a whole possess two very different actin sequence types, with G. sulphuraria being the only organism thus far known to possess both. The common ancestor of Rhodophytina and Cyanidiophytina may have had two actin genes, with differential loss explaining the distribution of these genes in modern-day groups. Our study provides new insight into the evolution and divergence of actin genes in cryptomonads and red algae, and in doing so underscores the challenges associated with heterogeneity in actin sequence evolution and ortholog/paralog detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. BioEssays 29:392–402

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2009a) The origin and spread of eukaryotic photosynthesis: evolving views in light of genomics. Bot Mar 52:95–103

    Article  CAS  Google Scholar 

  • Archibald JM (2009b) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  CAS  PubMed  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  CAS  PubMed  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Ehlting J (1995) Actin coding regions—gene family evolution and use as a phylogenetic marker. Arch Protistenkd 145:155–164

    Google Scholar 

  • Bhattacharya D, Weber K (1997) The actin gene of the glaucocystophyte Cyanophora paradoxa: analysis of the coding region and introns, and an actin phylogeny of eukaryotes. Curr Genet 31:439–446

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Stickel SK, Sogin ML (1991) Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). J Mol Evol 33:525–536

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Weber K, An SS, Berning-Koch W (1998) Actin phylogeny identifies Mesostigma viride as a flagellate ancestor of the land plants. J Mol Evol 47:544–550

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Aubry J, Twait EC, Jurk S (2000) Actin gene duplication and the evolution of morphological complexity in land plants. J Phycol 36:813–820

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Couch JA, Thorsteinsen KE, Gilson P, Deane JA, Hill DRA, McFadden GI (1996) Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur J Phycol 31:315–328

    Article  Google Scholar 

  • Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244

    Article  CAS  PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu XN, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Archibald JM (2009) Sizing up the genomic footprint of endosymbiosis. BioEssays 31:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Goodner BW, Davis JD, Quatrano RS (1995) Sequence of Actin cDNA from Fucus disticus. Plant Physiol 107:1007–1008

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Hoef-Emden K, Shrestha RP, Lapidot M, Weinstein Y, Melkonian M, Arad S (2005) Actin phylogeny and intron distribution in bangiophyte red algae (Rhodoplantae). J Mol Evol 61:360–371

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2001) Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? Mol Biol Evol 18:1551–1557

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Inagaki Y (2004) A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1 alpha. Proc Natl Acad Sci USA 101:15380–15385

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    Article  CAS  PubMed  Google Scholar 

  • Kitade Y, Nakamura M, Uji T, Fukuda S, Endo H, Saga N (2008) Structural features and gene-expression profiles of actin homologs in Porphyra yezoensis (Rhodophyta). Gene 423:79–84

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol 23:268–275

    Article  PubMed  Google Scholar 

  • Le Gall L, Lelong C, Rusig AM, Favrel P (2005) Characterization of an actin gene family in Palmaria palmata and Porphyra purpurea (Rhodophyta). Cah Biol Mar 46:311–322

    Google Scholar 

  • Leander BS, Keeling PJ (2004) Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. J Phycol 40:341–350

    Article  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994) Goniomonas—rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29:29–32

    Article  Google Scholar 

  • Meagher RB, McKinney EC, Vitale AV (1999) The evolution of new structures—clues from plant cytoskeletal genes. Trends Genet 15:278–284

    Article  CAS  PubMed  Google Scholar 

  • Moore CE, Archibald JM (2009) Nucleomorph Genomes. Annu Rev Genet 43:251–264

    Article  CAS  PubMed  Google Scholar 

  • Mourier T, Jeffares DC (2003) Eukaryotic intron loss. Science 300:1393

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28

    Article  PubMed  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  • Simpson AGB, Perley TA, Lara E (2008) Lateral transfer of the gene for a widely used marker, alpha-tubulin, indicated by a multi-protein study of the phylogenetic position of Andalucia (Excavata). Mol Phylogenet Evol 47:366–377

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stibitz TB, Keeling PJ, Bhattacharya D (2000) Symbiotic origin of a novel actin gene in the cryptophyte Pyrenomonas helgolandii. Mol Biol Evol 17:1731–1738

    CAS  PubMed  Google Scholar 

  • Takahashi H, Takano H, Kuroiwa H, Itoh R, Toda K, Kawano S, Kuroiwa T (1998) A possible role for actin dots in the formation of the contractile ring in the ultra-micro alga Cyanidium caldarium RK-1. Protoplasma 202:91–104

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanifuji G, Erata M, Ishida K, Onodera N, Hara Y (2006) Diversity of secondary endosymbiont-derived actin-coding genes in cryptomonads and their evolutionary implications. J Plant Res 119:205–215

    Article  CAS  PubMed  Google Scholar 

  • Voigt K, Wostemeyer J (2001) Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1 alpha genes. Gene 270:113–120

    Article  CAS  PubMed  Google Scholar 

  • Weber APM, Oesterhelt C, Gross W, Brautigam A, Imboden LA, Krassovskaya I, Linka N, Truchina J, Schneidereit J, Voll H, Voll LM, Zimmermann M, Jamai A, Riekhof WR, Yu B, Garavito RM, Benning C (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55:17–32

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Comeron JM, Yoon HS, Bhattacharya D (2009) Unexpected dynamic gene family evolution in algal actins. Mol Biol Evol 26:249–253

    Article  PubMed  Google Scholar 

  • Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492

    Article  CAS  Google Scholar 

  • Zheng B, Han M, Bernier M, Wen JK (2009) Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 276:2669–2685

    Article  CAS  PubMed  Google Scholar 

  • Zuccarello GC, Oellermann M, West JA, De Clerck O (2009) Complex patterns of actin molecular evolution in the red alga Stylonema alsidii (Stylonematophyceae, Rhodophyta). Phycol Res 57:59–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Joint Genome Institute’s Community Sequencing Program (http://www.jgi.doe.gov/sequencing/why/50026.html) for their ongoing efforts to sequence the nuclear genome of Guillardia theta, K. Barry and E. Lindquist of the JGI for project management and data availability, J. Schmutz for genome assembly, and M. W. Gray, P. Keeling, G. I. McFadden, and C. E. Lane for their contributions to the project. We also thank A. Weber for permission to analyze the Galdieria sulphuraria actin genes, H. Philippe for interesting discussion about actin evolution, and K. Sommerfeld and M. Dlutek for technical assistance. This study was supported in part by a Special Research Opportunities Grant from the Natural Sciences and Engineering Research Council of Canada awarded to JMA and M. W. Gray. GT is supported by a postdoctoral fellowship from the Tula Foundation and the Centre for Comparative Genomics and Evolutionary Bioinformatics at Dalhousie University. JMA is a Fellow of the Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, and holder of a New Investigator Award from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Archibald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Maximum likelihood phylogenetic tree constructed from an alignment (287 amino acid positions) of 83 actin proteins without Rhodophytina. The tree was produced using RaxML with the RtRev substitution matrix and Gamma + Invar model (4 site rate categories). Bootstrap values were calculated using the rapid bootstrap method and CAT model with 1000 replicates. No numbers are shown where bootstrap support was less than 80%. Scale bar indicates inferred number of amino acid substitutions per site. (EPS 462 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanifuji, G., Archibald, J.M. Actin Gene Family Dynamics in Cryptomonads and Red Algae. J Mol Evol 71, 169–179 (2010). https://doi.org/10.1007/s00239-010-9375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9375-6

Keywords

Navigation