Skip to main content
Log in

Deuterium-labelled N-acyl-l-homoserine lactones (AHLs)—inter-kingdom signalling molecules—synthesis, structural studies, and interactions with model lipid membranes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum’s acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein.

Figure Deuterium labelled N-acyl-l-homoserine lactones (AHLs) were synthesized in 2 steps. The combination of theoretical and experimental IR and Raman spectroscopy enables identification of most probable structures of AHLs. The integration of the deuterated AHLs in model lipid membranes (supported lipid bilayers) was further investigated using sum-frequency-generation (SFG) spectroscopy, to mimic interactions between AHL and cell membranes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3OC8-d 9-HSL:

N-(3-Oxooctanoyl-d 9)-l-homoserine lactone

3OC12-d 17-HSL:

N-(3-Oxododecanoyl-d 17)-l-homoserine lactone

3OC14-d 21-HSL:

N-(3-Oxotetradecanoyl-d 21)-l-homoserine lactone

AHLs:

N-Acyl-l-homoserine lactones

DFT:

Density functional theory

ESI-TOF MS:

Electrospray ionization time-of-flight mass spectrometry

ESI-MS/MS:

Electrospray ionization tandem mass spectrometry

HRMS:

High-resolution mass spectrometry

IR:

Infrared spectroscopy

QCM-D:

Quartz crystal microbalance with dissipation

SFG:

Sum-frequency-generation

SLBs:

Supported lipid bilayers

TLC:

Thin-layer chromatography

References

  1. Schuster M, Greenberg EP (2006) Int J Med Microbiol 296:73

    Article  CAS  Google Scholar 

  2. Amara N, Mashiach R, Amar D, Krief P, Spieser SAH, Bottomley MJ, Aharoni A, Meijler MM (2009) J Am Chem Soc 131:10610

    Article  CAS  Google Scholar 

  3. Boyer M, Wisniewski-Dye F (2009) FEMS Microbiol Ecol 70:1

    Article  CAS  Google Scholar 

  4. Ni N, Li M, Wang J, Wang B (2009) Med Res Rev 29:65

    Article  CAS  Google Scholar 

  5. Chhabra SR, Harty C, Hooi DS, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW (2003) J Med Chem 46:97

    Article  CAS  Google Scholar 

  6. Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J (2002) Bioorg Med Chem Lett 12:325

    Article  CAS  Google Scholar 

  7. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318

    Article  CAS  Google Scholar 

  8. Cooley M, Chhabra SR, Williams P (2008) Chem Biol 15:1141

    Article  CAS  Google Scholar 

  9. Rumbaugh KP, Griswold JA, Hamood AN (2000) Microbes Infect 2:1721

    Article  CAS  Google Scholar 

  10. Hughes DT, Sperandio V (2008) Nat Rev Microbiol 6:111

    Article  CAS  Google Scholar 

  11. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GSAB, Bycroft BW, Pritchard DI (1998) Infect Immun 66:36

    CAS  Google Scholar 

  12. Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA (2003) Infect Immun 71:4421

    Article  CAS  Google Scholar 

  13. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) Infect Immun 71:5785

    Article  CAS  Google Scholar 

  14. Zimmermann S, Wagner C, Muller W, Brenner-Weiss G, Hug F, Prior B, Obst U, Hansch GM (2006) Infect Immun 74:5687

    Article  CAS  Google Scholar 

  15. Heit B, Tavener S, Raharjo E, Kubes P (2002) J Cell Biol 159:91

    Article  CAS  Google Scholar 

  16. Ritchie AJ, Whittall C, Lazenby JJ, Chhabra SR, Pritchard DI, Cooley MA (2007) Immunol Cell Biol 85:596

    Article  CAS  Google Scholar 

  17. Davis BM, Jensen R, Williams P, O’Shea P (2010) PLoS ONE 5:e13522

    Article  Google Scholar 

  18. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118

    Article  Google Scholar 

  19. Chen X, Chen Z (2006) Biochim Biophys Acta 1758:1257

    Article  CAS  Google Scholar 

  20. Liu J, Conboy JC (2004) J Am Chem Soc 126:8894

    Article  CAS  Google Scholar 

  21. Liu J, Conboy JC (2004) J Am Chem Soc 126:8376

    Article  CAS  Google Scholar 

  22. Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) J Am Chem Soc 129:1420

    Article  CAS  Google Scholar 

  23. Chen X, Wang J, Kristalyn CB, Chen Z (2007) Biophys J 93:866

    Article  CAS  Google Scholar 

  24. Verreault D, Kurz V, Howell C, Koelsch P (2010) Rev Sci Instrum 81:063111

    Article  Google Scholar 

  25. Chhabra SR, Stead P, Bainton NJ, Salmond GP, Stewart GS, Williams P, Bycroft BW (1993) J Antibiot (Tokyo) 46:441

    Article  CAS  Google Scholar 

  26. Dekhane M, Douglas KT, Gilbert P (1996) Tetrahedron Lett 37:1883

    Article  CAS  Google Scholar 

  27. Dubinsky L, Jarosz LM, Amara N, Krief P, Kravchenko VV, Krom BP, Meijler MM (2009) Chem Commun (Camb):7378

  28. Yajima A, van Brussel AAN, Schripsema J, Nukada T, Yabuta G (2008) Org Lett 10:2047

    Article  CAS  Google Scholar 

  29. Thiel V, Kunze B, Verma P, Wagner-Dobler I, Schulz S (2009) ChemBioChem 10:1861

    Article  CAS  Google Scholar 

  30. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB, Williams P (1992) Biochem J 288(Pt 3):997

    CAS  Google Scholar 

  31. Kai K, Tani A, Hayashi H (2010) Bioorg Med Chem 18:3776

    Article  CAS  Google Scholar 

  32. Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA (2006) J Bacteriol 188:773

    Article  CAS  Google Scholar 

  33. Wang Q, Liu L, Lin C, Sun H, Zhang WX, Xi Z (2009) Dalton Trans:10433

  34. Durazo A, Abu-Omar MM (2002) Chem Commun (Camb):66

  35. Merck E (1974) Dyeing reagents for thin layer and paper chromatography. Merck, Darmstadt

    Google Scholar 

  36. Lagutchev A, Hambir SA, Dlott DD (2007) Phys Chemistry Lett C 111:13645

    Article  CAS  Google Scholar 

  37. Dirac PAM (1929) Proc Royal Soc A123:714

    Article  Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785

    Article  CAS  Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117:587

    Article  CAS  Google Scholar 

  41. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  42. Turbomole V6.3 (2011) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH -, TURBOMOLE GmbH s (2011) Turbomole V6.3, www.turbomole.com

  43. van Wüllen C (2011) J Comput Chem 32:1195

    Article  Google Scholar 

  44. Johnson RDI (2011) Computational chemistry comparison and benchmark database, NIST Standard Reference Database Number 101, Release 15b, http://cccbdb.nist.gov/

  45. Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123

    Article  CAS  Google Scholar 

  46. Cramer CJ (2006) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  47. Balabin RM (2008) J Chem Phys 129:164101

    Article  Google Scholar 

  48. Balabin RM (2011) Mol Phys 109:943

    Article  CAS  Google Scholar 

  49. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  50. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427

    Article  CAS  Google Scholar 

  51. Grimme S (2003) J Chem Phys 118:9095

    Article  CAS  Google Scholar 

  52. Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4

    Article  Google Scholar 

  53. Bachorz RA, Bischoff FA, Glöß A, Hättig C, Höfener S, Klopper W, Tew DP (2011) J Comput Chem 32:2492

    Article  CAS  Google Scholar 

  54. Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  55. Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108

    Article  Google Scholar 

  56. Hättig C (2005) Phys Chem Chem Phys 7:59

    Article  Google Scholar 

  57. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  58. The NMR spectra are in accordance with the literature: [5, 30]

  59. IR spectra and [α] 20D values are in accordance with the literature: (a) Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) J Am Chem Soc 127:12762; (b) Pomini AM, Marsaioli AJ (2008) J Nat Prod 71:1032

    Google Scholar 

  60. Raman spectra are in accordance with the literature: (a) Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and raman spectra. John Wiley & Sons, Ltd, Chichester (b) Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. Wiley, Chichester

  61. Thomas GL, Bohner CM, Williams HE, Walsh CM, Ladlow M, Welch M, Bryant CE, Spring DR (2006) Mol Biosyst 2:132

    Article  CAS  Google Scholar 

  62. Sundh M, Sofia S, Duncan SS (2010) Phys Chem Chem Phys 12:453

    Article  CAS  Google Scholar 

  63. Maibaum J, Rich DH (1989) J Med Chem 32:1571

    Article  CAS  Google Scholar 

  64. Vogiatzis KD, Mavrandonakis A, Klopper W, Froudakis GE (2009) ChemPhysChem 10:374

    Article  CAS  Google Scholar 

  65. Grimme S (2006) Angew Chem Int Ed 118:4571

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Helmholtz program Bio-interfaces is gratefully acknowledged. A.K. and K.F. were supported by the DFG-funded transregional collaborative research centre SFB/TRR 88 “3MET”. We thank Stefan Heissler from Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) for help with IR and Raman spectra acquisition. P.K. and C.B. thank Sofia Svedhem from Chalmers University of Technology for help with QCM-D and SLB preparation as well as Michael Grunze for his support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerald Brenner-Weiß or Stefan Bräse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubczyk, D., Barth, C., Kubas, A. et al. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs)—inter-kingdom signalling molecules—synthesis, structural studies, and interactions with model lipid membranes. Anal Bioanal Chem 403, 473–482 (2012). https://doi.org/10.1007/s00216-012-5839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5839-4

Keywords

Navigation