Skip to main content
Log in

Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The carbonaceous fraction of airborne particulate matter (PM) is of increasing interest due to the adverse health effects they are linked to. Its analytical ascertainment on a molecular level is still challenging. Hence, analysis of carbonaceous fractions is often carried out by determining bulk parameters such as the overall content of organic compounds (OC) and elemental carbon (EC) as well as the total carbon content, TC (sum of OC and EC), however, no information about the individual substances or substance classes, of which the single fractions consist can be obtained. In this work, a carbon analyzer and a photo-ionization time-of-flight mass spectrometer (PI-TOF-MS) were hyphenated to investigate individual compounds especially from the OC fractions. The carbon analyzer enables the stepwise heating of particle samples and provides the bulk parameters. With the PI-TOF-MS, it is possible to detect the organic compounds released during the single-temperature steps due to soft ionization and fast detection of the molecular ions. The hyphenation was designed, built up, characterized by standard substances, and applied to several kinds of samples, such as ambient aerosol, gasoline, and diesel emission as well as wood combustion emission samples. The ambient filter sample showed a strong impact of wood combustion markers. This was revealed by comparison to the product pattern of the similar analysis of pure cellulose and lignin and the wood combustion PM. At higher temperatures (450 °C), a shift to smaller molecules occurred due to the thermal decomposition of larger structures of oligomeric or polymeric nature comparable to lignocelluloses and similar oxygenated humic-like substances. Finally, particulate matter from gasoline and diesel containing 10% biodiesel vehicle exhaust has been analyzed. Gasoline-derived PM exhibited large polycyclic aromatic hydrocarbons, whereas diesel PM showed a much higher total organic content. The detected pattern revealed a strong influence of the biodiesel content on the nature of the particulate organic material.

Two-dimensional REMPI/TOF-MS spectrum of a PM loaded filter from car emissions using diesel (10% biodiesel) as fuel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feichter J (2003) Aerosole und das Klimasystem. Physik unserer Zeit 2:72–79

    Article  Google Scholar 

  2. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardioplumonary mortality and long-term exposure to fine particulate air pollution. J Am Med Assoc 287(9):1132–1141

    Article  CAS  Google Scholar 

  3. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360:1203–1209

    Article  Google Scholar 

  4. Law KS, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315:1537–1540

    Article  CAS  Google Scholar 

  5. Wichmann HE, Spix C, Tuch T, Wölke G, Peters A, Heinrich J, Kreyling WG, Heyder J (2000) Daily mortality and fine and ultrafine particles in Erfurt, Germany, part I: role of particle number and particle mass. Health Effects Institute, Cambridge, MA, pp 1–96

    Google Scholar 

  6. Chen LWA, Chow JC, Watson JG, Moosmüller H, Arnott WP (2004) Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: implications for thermal/optical analysis. Journal of Aerosol Science 35(6):765–780

    Article  CAS  Google Scholar 

  7. Monn C, Becker S (1999) Cytotoxicity and induction of proinflammatory cytokines from human moncytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharm 155:245–252

    Article  CAS  Google Scholar 

  8. Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Van Langenhove H (2010) Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmospheric Environment 44(15):1831–1846

    Article  CAS  Google Scholar 

  9. Zheng M, Cass GR, Schauer JJ, Edgerton ES (2002) Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ Sci Technol 36:2361–2371

    Article  CAS  Google Scholar 

  10. Cass GR (1998) Organic molecular tracers for particulate air pollution sources. TrAC - Trends in Analytical Chemistry 17(6):356–366

    Article  CAS  Google Scholar 

  11. Welthagen W, Schnelle-Kreis J, Zimmermann R (2003) Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF MS). Analysis of airborne particulate matter. J Chromatogr A 1019:233–249

    Article  CAS  Google Scholar 

  12. Falkovich AH, Rudich Y (2001) Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. Environmental Science & Technology 35:2326–2333

    Article  CAS  Google Scholar 

  13. Waterman D, Horsfield B, Leistner F, Hall K, Smith S (2000) Quantification of polycyclic aromatic hydrocarbons in the NIST Standard Reference Material (SRM1649A) urban dust using thermal desorption GC/MS. Anal Chem 72(15):3563–3567

    Article  CAS  Google Scholar 

  14. Chow JC, Yu JZ, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK (2007) The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 42(11):1521–1541

    Article  CAS  Google Scholar 

  15. Grosjean D (1975) Solvent extraction and organic carbon determination in atmospheric particulate matter—organic extraction organic carbon analyzer (OE-OCA) technique. Anal Chem 47(6):797–805

    Article  CAS  Google Scholar 

  16. Cachier H, Bremond MP, Buatmenard P (1989) Thermal separation of soot carbon. Aerosol Science and Technology 10(2):358–364

    Article  CAS  Google Scholar 

  17. Novakov T (1982) Soot in the atmosphere. Particulate carbon: atmosperic life cycle:19–41

  18. Cadle SH, Groblicki PJ, Stroup DP (1980) Automated carbon analyzer for particulate samples. Analyzer for particulate samples. Anal Chem 52(13):2201–2206

    Article  CAS  Google Scholar 

  19. Mueller PK, Fung, K. (1982) Atmospheric particulate carbon observations in urban and rural areas of the United States. Particulate carbon: atmospheric life cycle: 343–370

  20. Fung K (1990) Particulate carbon speciation by MnO2 oxidation. Aerosol Sciene and Technology 12:122–127

    Article  CAS  Google Scholar 

  21. Chow JC, Watson JG, Louie PKK, Chen LWA, Sin D (2005) Comparison of PM2.5 carbon measurement methods in Hong Kong, China. Environmental Pollution 137(2):334–344

    Article  CAS  Google Scholar 

  22. Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmüller H, Fung K (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38(16):4414–4422

    Article  CAS  Google Scholar 

  23. Countess RJ (1990) Interlaboratory analysis of carbonaceous aerosol samples. Aerosol Science and Technology 12(1):114–121

    Article  Google Scholar 

  24. Schmid H, Laskus L, Abraham HJ, Baltensperger U, Lavanchy V, Bizjak M, Cachier H, Crow D, Chow J, Gnauk T, Even A, Brink HMt, Giesen K-P, Hitzenberger R, Hueglin C, Maenhaut W, Pio C, Carvalho A, Putaud J-P, Toom-Sauntry D, Puxbaum H (2001) Results of the "carbon conference" international aerosol carbon round robin test stage I. Atmospheric Environment 35:2111–2121

    Article  CAS  Google Scholar 

  25. Aymoz G, Jaffrezo JL, Chapuis D, Cozic J, Maenhaut W (2007) Seasonal variation of PM10 main constituents in two valleys of the French Alps. I: EC/OC fractions Atmos Chem Phys 7:661–675

    Article  CAS  Google Scholar 

  26. Chen LWA, Watson JG, Chow JC, Magliano KL (2007) Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models. Environ Sci Technol 41(8):2818–2826

    Article  CAS  Google Scholar 

  27. Cao JJ, Lee SC, Ho KF, Zou SC, Fung K, Li Y, Watson JG, Chow JC (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmospheric Environment 38(27):4447–4456

    Article  CAS  Google Scholar 

  28. Streibel T, Weh J, Mitschke S, Zimmermann R (2006) Thermal desorption/pyrolysis coupled with photoionization time-of-flight mass spectrometry for the analysis of molecular organic compounds and oligomeric and polymeric fractions in urban particulate matter. Anal Chem 78(15):5354–5361

    Article  CAS  Google Scholar 

  29. Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. Air quality studies. Atmospheric Environment - Part A General Topics 27 A(8):1185–1201

    Article  Google Scholar 

  30. Huntzicker JJ, Johnson, R.L., Shah, J.J., Cary, R.A. (1982) Analysis of organic and elemental carbon in ambient aerosol by a thermal-optical method. Particulate Carbon: Atmosperic life cycle: 79–88

  31. Brown AL, Dayton DC, Nimlos MR, Daily JW (2001) Characterization of biomass pyrolysis vapors with molecular beam, single photon ionization time-of-flight mass spectrometry. Chemosphere 42(5–7):663–669

    Article  CAS  Google Scholar 

  32. Turpin BJ, Cary RA, Huntzicker JJ (1990) An in situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Science and Technology 12(1):161–171

    Article  CAS  Google Scholar 

  33. Boesl U (2000) Laser mass spectrometry for environmental and industrial trace analysis. J Mass Spectrom 35:289–304

    Article  CAS  Google Scholar 

  34. Mühlberger F, Zimmermann R, Kettrup A (2001) A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization. Anal Chem 73(3590–3604)

    Google Scholar 

  35. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Laser mass spectrometry as on-line sensor for industrial process analysis: process control of coffee roasting. Anal Chem 76:1386–1402

    Article  CAS  Google Scholar 

  36. Butcher DJ (1999) Vacuum ultraviolet radiation for single-photoionization mass spectrometry: a review. Microchemical Journal 62:354–362

    Article  CAS  Google Scholar 

  37. Ferge T, Karg E, Schröppel A, Coffee KR, Tobias HJ, Frank M, Gard EE, Zimmermann R (2006) Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry. Environ Sci Technol 40:3327–3335

    Article  CAS  Google Scholar 

  38. Ramdahl T (1983) Retene—a molecular marker of wood combustion in ambient air. Nature 306(5943):580–582

    Article  CAS  Google Scholar 

  39. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1998) Sources of fine organic aeresol. 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32(1):13–22

    Article  CAS  Google Scholar 

  40. Cheung KL, Ntziachristos L, Tzamkiozis T, Schauer JJ, Samaras Z, Moore KF, Sioutas C (2010) Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology 44:500–513

    Article  CAS  Google Scholar 

  41. Cheung KL, Polidori A, Ntziachristos L, Tzamkiozis JJ, Samaras Z, Cassee FR, Gerlofs M, Sioutas C (2009) Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environ Sci Technol 43:6334–6340

    Article  CAS  Google Scholar 

  42. Bente M, Sklorz M, Streibel T, Zimmermann R (2008) Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal Chem 80(23):8991–9004

    Article  CAS  Google Scholar 

  43. Jensen TE, Hites RA (1983) Aromatic diesel emissions as a function of engine conditions. Anal Chem 55(4):594–599

    Article  CAS  Google Scholar 

  44. Borras E, Tortajada-Genaro LA, Vazquez M, Zielinska B (2009) Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmospheric Environment 43(37):5944–5952

    Article  CAS  Google Scholar 

  45. Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, GelencseÌer A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42(32):7530–7543

    Article  CAS  Google Scholar 

  46. Subbalakshmi Y, Patti AF, Lee GSH, Hooper MA (2000) Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR. J Environ Monit 2(6):561–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the Deutsche Forschungsgemeinschaft (DFG, code number ZI764_1-2). The authors thank Kochy Fung for his ongoing help and ideas for the coupling. The ambient and wood combustion samples were provided by the Helmholtz Zentrum München (Jürgen Orasche, Gülcin Abbaszade and Jürgen Schnelle-Kreis). Diesel and gasoline emission samples were received from the European Commission-Joint Research Centre (JRC) in Ispra, Italy (Kevin Douglas). Special thanks go to Simone Krüger for assistance with the instrument and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Streibel.

Additional information

Ralf Zimmermann currently is also Affiliate Research Professor at the DRI.

Published in the special issue Aerosol Analysis with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowsky, J., Streibel, T., Sklorz, M. et al. Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal Bioanal Chem 401, 3153–3164 (2011). https://doi.org/10.1007/s00216-011-5425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5425-1

Keywords

Navigation