Skip to main content
Log in

The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Spessart district (SW Germany), located at the southwestern margin of the Permian Kupferschiefer basin in Central Europe, hosts abundant stratabound and structurally controlled base metal mineralization. The mineralization styles identified are (1) stratabound Cu-Pb-Zn-(Ag) ores in Zechstein sedimentary rocks, (2) structurally controlled Cu-As-(Ag) ores in Zechstein sedimentary rocks, (3) crosscutting Co-Ni-(Bi)-As and Cu-Fe-As veins, (4) stratabound metasomatic Fe-Mn carbonate ores in Zechstein dolomite, (5) barren barite veins, and (6) Fe-Mn-As veins in Permian rhyolites. Building on previous work that involved mineralogical, textural, and chemical characterization of the major mineralization types, we have performed a comprehensive sulfur isotope study that applied both conventional and novel laser-ablation multi-collector inductively coupled plasma mass spectrometry techniques. The δ34S values of sulfide minerals from the different ore types are consistently negative and highly variable, in the range between −44.5‰ and −3.9‰, whereas the δ34S values of barite are all positive in the range between 4.7‰ and 18.9‰. Remarkably, stratabound and structurally controlled mineralization in Zechstein sedimentary rocks has the least negative δ34S values, whereas vein-type deposits have consistently more negative δ34S values. The observed pattern of sulfide δ34S values can be best interpreted in terms of fluid mixing at the basement-cover interface. Hydrothermal fluids originating from the crystalline basement migrated upward along subvertical fault zones and were periodically injected into groundwaters that were flowing in the post-Variscan sedimentary cover. These groundwaters had interacted with the Zechstein sedimentary rocks, resulting in fluids characterized by elevated concentrations of reduced sulfur (with negative δ34S values) and alkaline pH. Repeated mixing between both chemically contrasting fluids caused rapid and efficient precipitation of sulfide ore minerals in hydrothermal veins with highly variable but distinctly negative δ34S values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7:123–147

    Article  Google Scholar 

  • Bechtel A, Püttmann W (1997) Palaeoceanography of the early Zechstein Sea during Kupferschiefer deposition in the Lower Rhine Basin (Germany): a reappraisal from stable isotope and organic geochemical investigations. Palaeogeogr Palaeoclimatol Palaeoecol 136:331–358

    Article  Google Scholar 

  • Bechtel A, Elliott WC, Wampler JM, Oszczepalski S (1999) Clay mineralogy, crystallinity, and K/Ar ages of illites in the Polish Zechstein Basin: implications for the age of the Kupferschiefer-type mineralization. Econ Geol 94:261–272

    Article  Google Scholar 

  • Bechtel A, Sun Y, Püttmann W, Hoernes S, Hoefs J (2001) Isotopic evidence for multi-stage metal enrichment in the Kupferschiefer from the Sangershausen Basin, Germany. Chem Geol 176:31–49

    Article  Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2002) Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland). Chem Geol 185:9–31

    Article  Google Scholar 

  • Bendall C, Lahaye J, Fiebig J, Weyer S, Brey GP (2006) In-situ sulfur isotope analysis by laser-ablation MC-ICPMS. Appl Geochem 21:782–787

    Article  Google Scholar 

  • Blair T (1997) Thermochemical arsenite reduction (TAR): a new hypothesis for the origin of “Cobalt-type” Ni-Co-arsenide vein deposits. Unpublished MSc Thesis, McGill University, p 38

  • Blundell DJ, Karnkowski PH, Alderton DHM, Oszczepalski S, Kucha H (2003) Copper mineralization of the Polish Kupferschiefer: a proposed basement fault-fracture system of fluid flow. Econ Geol 98:1487–1495

    Article  Google Scholar 

  • Boiron MC, Cathelineau M, Banks DA, Buschaert S, Fourcade S, Coulibaly Y, Michelot JL, Boyce A (2002) Fluid transfers at a basement/cover interfac.e Part II. Large-scale introduction of chlorine into the basement by Mesozoic basinal brines. Chem Geol 192:121–140

    Article  Google Scholar 

  • Canals A, Cardellach E (1993) Strontium and sulfur isotope geochemistry of low-temperature barite-fluorite veins of the Catalonian Coastal Ranges (NE Spain): a fluid mixing model and age constraints. Chem Geol 104:269–280

    Article  Google Scholar 

  • Cathles LM, Oszczepalski S, Jowett EC (1993) Mass balance evaluation of the late diagenetic hypothesis for Kupferschiefer Cu mineralization in the Lubin basin of southwestern Poland. Econ Geol 88:948–956

    Article  Google Scholar 

  • Dombrowski A, Okrusch M, Henjes-Kunst F (1994) Geothermometry and geochronology on mineral assemblages in orthogneisses and related metapelites of the Spessart Crystalline Complex, NW Bavaria, Germany. Chem Erde 54:85–101

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61

    Article  Google Scholar 

  • Fritz P, Frape SK (1982) Saline groundwaters in the Canadian Shield. A first overview. Chem Geol 36:179–190

    Article  Google Scholar 

  • Garven G, Ge S, Person MA, Sverjensky DA (1993) Genesis of stratabound ore-deposits in the midcontinent basins of North America. 1. The role of regional groundwater-flow. Am J Sci 293:497–568

    Google Scholar 

  • Giesemann A, Jäger H, Norman A, Brand W (1994) On-line sulfur isotope determination using an element analyzer coupled to mass spectrometer. Anal Chem 66:2816–2819

    Article  Google Scholar 

  • Gleeson SA, Yardley BWD, Boyce AJ, Fallick AE, Munz IA (2000) From basin to the basement: the movement of surface fluids into the crust. J Geochem Explor 69–70:527–531

    Article  Google Scholar 

  • Gleeson SA, Yardley BWD, Munz IA, Boyce AJ (2003) Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines. Geofluids 3:33–48

    Article  Google Scholar 

  • Hautmann S, Brander H, Lippolt HJ, Lorenz J (1999) K-Ar and (U + Th)-He chronometry of multistage alteration and mineralisation in the Hartkoppe rhyolite, Spessart, Germany. J Conf Abstr 4:769

    Google Scholar 

  • Hoewe J, Sibbald T (1978) On the genesis of rabbit lake and other unconformity-type uranium in Northern Saskatchewan, Canada. Econ Geol 73:1451–1473

    Google Scholar 

  • Hofmann R, Schürenberg H (1979) Geochemische Untersuchungen gangförmiger Barytvorkommen in Deutschland. Monogr Ser Miner Depos 17:1–80

  • Jones HD, Kesler SE, Furman FC, Kyle JR (1996) Sulfur isotope geochemistry of southern Appalachian Mississippi Valley-type deposits. Econ Geol 91:355–367

    Article  Google Scholar 

  • Jowett EC (1986) Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegend brines during Triassic rifting. Econ Geol 81:1823–1837

    Article  Google Scholar 

  • Jowett EC, Pearce GW, Rydzewski A (1987) A mid-Triassic paleomagnetic age of the Kupferschiefer mineralization in Poland based on a revised apparent polar wander path for Europe and Russia. J Geophys Res 92:581–598

    Article  Google Scholar 

  • Jowett RC, Roth T, Rydzewski A, Oszczepalski S (1991a) Background δ34S values of Kupferschiefer sulfides in Poland—pyrite-marcasite nodules. Miner Depos 26:89–98

    Article  Google Scholar 

  • Jowett RC, Rye RO, Rydzewski A, Oszczepalski S (1991b) Isotopic evidence for the addition of sulfur during formation of the Kupferschiefer deposits in Poland. Zentralbl Geol Paläontol 1991:1001–1015

    Google Scholar 

  • Kading KC (2005) The Zechstein in the stratigraphic scale of Germany 2002. Newsl Stratigr 41:123–127

    Article  Google Scholar 

  • Kampschulte A, Buhl D, Strauss H (1998) The sulfur and strontium isotopic compositions of Permian evaporites from the Zechstein basin, northern Germany. Geol Rundsch 87:192–199

    Article  Google Scholar 

  • Kister P, Vieillard P, Cuney M, Quirt D, Laverret E (2005) Thermodynamic constraints on the mineralogical and fluid composition evolution in a clastic sedimentary basin: the Athabasca Basin (Saskatchewan, Canada). Eur J Mineral 17:325–341

    Article  Google Scholar 

  • Koerner A, Kissling E, Miller SA (2004) A model of deep crustal fluid flow following the Mw = 8.0 Antofagasta, Chile, earthquake. J Geophys Res 109:B06307

    Article  Google Scholar 

  • Kotzer TG, Kyser TK (1995) Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology. Chem Geol 120:45–89

    Article  Google Scholar 

  • Kramm U, Wedepohl KH (1991) The isotopic composition of strontium and sulfur in seawater of late Permian (Zechstein) age. Chem Geol 90:253–262

    Article  Google Scholar 

  • Krouse HR, Parafinikus J, Nowak J, Halas S (2006) Millimeter scale variations in the isotopic composition of vein sulphide minerals in the Kupferschiefer deposits, Lubin area, SW Poland. Isot Environ Health Stud 42:327–333

    Article  Google Scholar 

  • Kucha H (1990) Geochemistry of the Kupferschiefer, Poland. Geol Rundsch 79:387–399

    Article  Google Scholar 

  • Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlungsalter (K-Ar) der Muskovit-Biotite-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol Rundsch 75:569–583

    Article  Google Scholar 

  • Lodemann M, Fritz P, Wolf M, Ivanovich M, Hansen BT, Nolte E (1997) On the origin of saline fluids in the KTB (continental deep drilling project of Germany). Appl Geochem 12:831–849

    Article  Google Scholar 

  • Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur J Mineral 4:1053–1068

    Google Scholar 

  • Lüders V, Gerler J, Hein UF, Reutel CJ (1993) Chemical and thermal development of ore-forming solutions in the Harz Mountains: a summary of fluid inclusion studies. Monogr Ser Miner Depos 30:117–132

    Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175

    Article  Google Scholar 

  • Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389

    Article  Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Article  Google Scholar 

  • Marowsky G (1969) Schwefel-, Kohlenstoff- und Sauerstoff-Isotopenuntersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung. Contrib Mineral Petrol 22:290–334

    Article  Google Scholar 

  • Menning M, Gast R, Hagdorn H, Kading KC, Szurlies M, Nitsch E (2005) Time scale for the Permian and Triassic groups in the stratigraphical scale of Germany 2002, cyclostratigraphic calibration of the Dyassic and Germanic Triassic groups and the age of the strata Roadium to Rhaetium 2005. Newsl Stratigr 41:173–210

    Article  Google Scholar 

  • Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJP (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature 427:724–727

    Article  Google Scholar 

  • Minissale A, Vaselli OK, Tassi F, Magro G, Grechi GP (2002) Fluid mixing in carbonate aquifers near Rapolano (central Italy): chemical and isotopic constraints. Appl Geochem 17:1329–1342

    Article  Google Scholar 

  • Möller P, Woith H, Dulski P, Luders V, Erzinger J, Kampf H, Pekdeger A, Hansen B, Lodemann M, Banks D (2005) Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids 5:28–41

    Article  Google Scholar 

  • Muchez P, Slobodnik M, Viaene W, Keppens E (1994) Mississippi Valley-type Pb-Zn mineralization in eastern Belgium: indications for gravity-driven flow. Geology 22:1011–1014

    Article  Google Scholar 

  • Müller G, Nielsen H, Ricke W (1966) Schwefel-isotopen-verhältnisse in formationswässern und evaporiten nord- und süddeutschlands. Chem Geol 1:211–220

    Article  Google Scholar 

  • Muir-Wood R, King GCP (1993) Hydrological signatures of earthquake-strain. J Geophys Res B 98:22035–22068

    Article  Google Scholar 

  • Murawski H (1954) Bau und Genese von Schwerspatlagerstätten des Spessart. Neues Jahrb Geol Paläontol Monatsh 1954:145–163

    Google Scholar 

  • Nasir S, Okrusch M, Kreuzer H, Lenz H, Höhndorf A (1991) Geochronology of the Spessart crystalline complex, Mid-German crystalline rise. Mineral Petrol 43:39–55

    Article  Google Scholar 

  • Nurmi PA, Kukkonen IT, Lahermo PW (1988) Geochemistry and origin of saline groundwaters in the Fennoscandian Shield. Appl Geochem 3:185–203

    Article  Google Scholar 

  • Ohmoto H, Lasaga AC (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1745

    Article  Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 435–486

    Google Scholar 

  • Okrusch M, Weber K (1996) Der Kristallinkomplex des Vorspessart. Z Geol Wiss 24:141–174

    Google Scholar 

  • Okrusch M, Lorenz JA, Weyer S (2007) The genesis of sulfide assemblages in the former Wilhelmine mine, Spessart, Bavaria, Germany. Can Mineral 45:723–750

    Article  Google Scholar 

  • Oliver NHS, McLellan JG, Hobbs BE, Cleverley JS, Ord A, Feltrin L (2006) Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Econ Geol 101:1–31

    Article  Google Scholar 

  • Oszczepalski S (1999) Origin of the Kupferschiefer plymetallic mineralization in Poland. Miner Depos 34:599–613

    Article  Google Scholar 

  • Paul J (1985) Stratigraphie und Fazies des südwestdeutschen Zechsteins. Geol Jahrb Hess 113:59–73

    Google Scholar 

  • Paul J (2006) Der Kupferschiefer: Lithologie, Stratigraphie, Fazies und Metallogenese eines Schwarzschiefers. Z Deutsch Ges Geowiss 157:57–76

    Article  Google Scholar 

  • Person M, Raffensperger JP, Ge SM, Garven G (1996) Basin-scale hydrogeologic modeling. Rev Geophys 34:61–87

    Article  Google Scholar 

  • Piestrzynski A, Pieczonka J, Gluszek A (2002) Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Miner Depos 37:512–528

    Article  Google Scholar 

  • Piestrzynski A, Wodzicki A (2000) Origin of the gold deposit in the Polkowice-West Mine, Lubin-Sieroszowice Mining District, Poland. Miner Depos 35:37–47

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105

    Google Scholar 

  • Rick B (1990) Sulfur and oxygen isotopic composition of Swiss Gipskeuper (Upper Triassic). Chem Geol 80:243–250

    Google Scholar 

  • Sawlowicz Z (1989) On the origin of copper mineralization in the Kupferschiefer: a sulfur isotope study. Terra Nova 1:339–343

    Article  Google Scholar 

  • Sawlowicz Z (1990) Primary copper sulphides from the Kupferschiefer, Poland. Miner Depos 25:262–271

    Article  Google Scholar 

  • Sawlowicz Z, Wedepohl KH (1992) The origin of rhytmic sulfide bands from the Permian sandstones (Weissliegendes) in the footwall of the Fore-Sudetic Kupferschiefer (Poland). Miner Depos 27:242–248

    Article  Google Scholar 

  • Schmid H, Weinelt W (1978) Lagerstätten in Bayern. Geol Bavarica 77:1–160

    Google Scholar 

  • Schmidt FP, Friedrich GH (1988) Geologic setting and genesis of Kupferschiefer mineralization in West Germany. In: Friedrich GH, Herzig PM (eds) Base metal sulfide deposits in volcanic and sedimentary environments. SGA Spec Publ No. 6, Springer-Verlag, Berlin, pp 25–59

  • Schmidt FP, Schumacher C, Spieth V, Friedrich G (1986) Results of recent exploration for copper-silver deposits in the Kupferschiefer of West Germany. In: Friedrich GH et al (eds) Geology and metallogeny of copper deposits. SGA Spec Publ No. 4, Springer-Verlag, pp 572–582

  • Schmidt-Mumm A, Wolfgramm M (2002) Diagenesis and fluid mobilisation during the evolution of the North German Basin—evidence from fluid inclusion and sulphur isotope analysis. Mar Petrol Geol 19:229–246

    Article  Google Scholar 

  • Schmidt-Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the north German and Polish basin. Geofluids 4:315–328

    Article  Google Scholar 

  • Schmitt RT (2001) Zur Petrographie, Geochemie und Buntmetallmineralisation des Zechstein-1 (Werra-Folge) im Gebiet Huckelheim - Großkahl (Nordwestlicher Spessart). Mitt Naturwiss Museum Stadt Aschaffenburg 20:1–100

    Google Scholar 

  • Schumacher C, Kaidies E, Schmidt FP (1984) Der basale Zechstein der Spessart-Rhön-Schwelle. Z Deutsch Geol Ges 135:563–571

    Google Scholar 

  • Schwinn G, Wagner T, Markl G, Baatartsogt B (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982

    Article  Google Scholar 

  • Seward TM, Barnes HL (1997) Metal transport by hydrothermal ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 435–486

    Google Scholar 

  • Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950

    Article  Google Scholar 

  • Sibson RH (2000) Fluid involvement in normal faulting. J Geodyn 29:469–499

    Article  Google Scholar 

  • Speczik S (1995) The Kupferschiefer mineralization of central Europe: new aspects and major areas of future research. Ore Geol Rev 9:411–426

    Article  Google Scholar 

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral chemistry and fluid evolution of the hydrothermal Wenzel deposit, southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Mineral 45:1147–1176

    Article  Google Scholar 

  • Stober I, Bucher K (1999a) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254

    Article  Google Scholar 

  • Stober I, Bucher K (1999b) Origin of salinity of deep groundwater in crystalline rocks. Terra Nova 11:181–185

    Article  Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth's crust. Geofluids 4:143–151

    Article  Google Scholar 

  • Stober I, Bucher K (2005) The upper continental crust, an aquifer and its fluid: hydaulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids 5:8–19

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224

    Article  Google Scholar 

  • Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000 degrees C and 5 kb. Geochim Cosmochim Acta 61:1359–1412

    Article  Google Scholar 

  • van Wees JD, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59

    Article  Google Scholar 

  • Vaughan DJ, Sweeny M, Friedrich G, Diedel R, Hanczyk C (1989) The Kupferschiefer: an overview with an appraisal of the different types of mineralization. Econ Geol 84:1003–1027

    Article  Google Scholar 

  • Wagner T, Lorenz J (2002) Mineralogy of complex Co-Ni-Bi vein mineralization Bieber deposit, Spessart, Germany. Mineral Mag 66:385–407

    Article  Google Scholar 

  • Warren JK (2000) Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Aust J Earth Sci 47:179–208

    Article  Google Scholar 

  • Wedepohl KH, Rentsch J (2006) The composition of brines in the early diagenetic mineralization of the Permian Kupferschiefer in Germany. Contrib Mineral Petrol 152:323–333

    Article  Google Scholar 

  • Weyer S, Schwieters J (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom 226:355–368

    Article  Google Scholar 

  • Wilkinson JJ, Jenkin GRT, Fallick AE, Foster RP (1995) Oxygen and hydrogen isotopic evolution of the Variscan crustal fluids, south Cornwall, U.K. Chem Geol 123:239–254

    Article  Google Scholar 

  • Wilson AM, Boles JR, Garven G (2000) Calcium mass transport and sandstone diagenesis during compaction-driven flow: Stevens Sandstone, San Joaquin basin, California. Geol Soc Amer Bull 112:845–856

    Article  Google Scholar 

  • Wood SA, Samson IM (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Rev Econ Geol 10:33–76

    Google Scholar 

  • Zheng YF, Hoefs J (1993) Stable isotope geochemistry of hydrothermal mineralizations in the Harz Mountains. II. Sulfur and oxygen isotopes of sulfides and sulfate and constraints on metallogenetic models). Monogr Ser Miner Depos 30:211–229

    Google Scholar 

  • Ziegler PA (1987) Geodynamic model for Alpine intra-plate compressional deformation in western and central Europe. Geol Soc Lond Spec Publ 44:63–85

    Article  Google Scholar 

Download references

Acknowledgements

This project was made possible by funding from the German Research Council (DFG). The mineral concentrates were carefully prepared by Maria Kirchenbaur (Würzburg). Uli Schüssler (Würzburg) is thanked for his help and assistance during electron-microprobe analysis. The conventional sulfur isotope analyses were performed with the assistance of Bernd Steinhilber (Tübingen), whose help is gratefully acknowledged. Further thanks are due to Klaus-Peter Kelber (Würzburg) for the microphotographs and Peter Späthe (Würzburg) for the preparation of the polished sections. Adrian Boyce and Bernd Lehmann are thanked for their constructive comments that have helped to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wagner.

Additional information

Editorial handling: A. Boyce

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, T., Okrusch, M., Weyer, S. et al. The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Miner Deposita 45, 217–239 (2010). https://doi.org/10.1007/s00126-009-0270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-009-0270-2

Keywords

Navigation